STSPhys: Enhanced Remote Heart Rate Measurement With Spatial-Temporal SwiftFormer

IF 3.2 2区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Signal Processing Letters Pub Date : 2024-12-25 DOI:10.1109/LSP.2024.3522854
Hyunduk Kim;Sang-Heon Lee;Myoung-Kyu Sohn;Jungkwang Kim;Hyeyoung Park
{"title":"STSPhys: Enhanced Remote Heart Rate Measurement With Spatial-Temporal SwiftFormer","authors":"Hyunduk Kim;Sang-Heon Lee;Myoung-Kyu Sohn;Jungkwang Kim;Hyeyoung Park","doi":"10.1109/LSP.2024.3522854","DOIUrl":null,"url":null,"abstract":"Estimating heart activities and physiological signals from facial video without any contact, known as remote photoplethysmography and remote heart rate estimation, holds significant potential for numerous applications. In this letter, we present a novel approach for remote heart rate measurement leveraging a Spatial-Temporal SwiftFormer architecture (STSPhys). Our model addresses the limitations of existing methods that rely heavily on 3D CNNs or 3D visual transformers, which often suffer from increased parameters and potential instability during training. By integrating both spatial and temporal information from facial video data, STSPhys achieves robust and accurate heart rate estimation. Additionally, we introduce a hybrid loss function that integrates constraints from both the time and frequency domains, further enhancing the model's accuracy. Experimental results demonstrate that STSPhys significantly outperforms existing state-of-the-art methods on intra-dataset and cross-dataset tests, achieving superior performance with fewer parameters and lower computational complexity.","PeriodicalId":13154,"journal":{"name":"IEEE Signal Processing Letters","volume":"32 ","pages":"521-525"},"PeriodicalIF":3.2000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Signal Processing Letters","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10816295/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating heart activities and physiological signals from facial video without any contact, known as remote photoplethysmography and remote heart rate estimation, holds significant potential for numerous applications. In this letter, we present a novel approach for remote heart rate measurement leveraging a Spatial-Temporal SwiftFormer architecture (STSPhys). Our model addresses the limitations of existing methods that rely heavily on 3D CNNs or 3D visual transformers, which often suffer from increased parameters and potential instability during training. By integrating both spatial and temporal information from facial video data, STSPhys achieves robust and accurate heart rate estimation. Additionally, we introduce a hybrid loss function that integrates constraints from both the time and frequency domains, further enhancing the model's accuracy. Experimental results demonstrate that STSPhys significantly outperforms existing state-of-the-art methods on intra-dataset and cross-dataset tests, achieving superior performance with fewer parameters and lower computational complexity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于时空SwiftFormer的增强远程心率测量
在没有任何接触的情况下从面部视频中估算心脏活动和生理信号,即远程光电心动图和远程心率估算,在许多应用中都具有巨大的潜力。在这封信中,我们提出了一种利用空间-时间 SwiftFormer 架构(STSPhys)进行远程心率测量的新方法。我们的模型解决了严重依赖三维 CNN 或三维视觉变换器的现有方法的局限性,这些方法在训练过程中往往会出现参数增加和潜在不稳定性的问题。通过整合面部视频数据的空间和时间信息,STSPhys 实现了稳健而准确的心率估计。此外,我们还引入了混合损失函数,该函数综合了时域和频域的约束,进一步提高了模型的准确性。实验结果表明,在数据集内和跨数据集测试中,STSPhys 明显优于现有的先进方法,以更少的参数和更低的计算复杂度实现了卓越的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Signal Processing Letters
IEEE Signal Processing Letters 工程技术-工程:电子与电气
CiteScore
7.40
自引率
12.80%
发文量
339
审稿时长
2.8 months
期刊介绍: The IEEE Signal Processing Letters is a monthly, archival publication designed to provide rapid dissemination of original, cutting-edge ideas and timely, significant contributions in signal, image, speech, language and audio processing. Papers published in the Letters can be presented within one year of their appearance in signal processing conferences such as ICASSP, GlobalSIP and ICIP, and also in several workshop organized by the Signal Processing Society.
期刊最新文献
Heterogeneous Dual-Branch Emotional Consistency Network for Facial Expression Recognition Adaptive Superpixel-Guided Non-Homogeneous Image Dehazing Video Inpainting Localization With Contrastive Learning Cross-View Fusion for Multi-View Clustering Piecewise Student's t-distribution Mixture Model-Based Estimation for NAND Flash Memory Channels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1