Sensorimotor Learning With Stability Guarantees via Autonomous Neural Dynamic Policies

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2025-01-01 DOI:10.1109/LRA.2024.3524878
Dionis Totsila;Konstantinos Chatzilygeroudis;Valerio Modugno;Denis Hadjivelichkov;Dimitrios Kanoulas
{"title":"Sensorimotor Learning With Stability Guarantees via Autonomous Neural Dynamic Policies","authors":"Dionis Totsila;Konstantinos Chatzilygeroudis;Valerio Modugno;Denis Hadjivelichkov;Dimitrios Kanoulas","doi":"10.1109/LRA.2024.3524878","DOIUrl":null,"url":null,"abstract":"State-of-the-art sensorimotor learning algorithms, either in the context of reinforcement learning or imitation learning, offer policies that can often produce unstable behaviors, damaging the robot and/or the environment. Moreover, it is very difficult to interpret the optimized controller and analyze its behavior and/or performance. Traditional robot learning, on the contrary, relies on dynamical system-based policies that can be analyzed for stability/safety. Such policies, however, are neither flexible nor generic and usually work only with proprioceptive sensor states. In this work, we bridge the gap between generic neural network policies and dynamical system-based policies, and we introduce Autonomous Neural Dynamic Policies (ANDPs) that: (a) are based on autonomous dynamical systems, (b) always produce asymptotically stable behaviors, and (c) are more flexible than traditional stable dynamical system-based policies. ANDPs are fully differentiable, flexible generic-policies that accept any observation input, while ensuring asymptotic stability. Through several experiments, we explore the flexibility and capacity of ANDPs in several imitation learning tasks including experiments with image observations. The results show that ANDPs combine the benefits of both neural network-based and dynamical system-based methods.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 2","pages":"1760-1767"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10819655/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

State-of-the-art sensorimotor learning algorithms, either in the context of reinforcement learning or imitation learning, offer policies that can often produce unstable behaviors, damaging the robot and/or the environment. Moreover, it is very difficult to interpret the optimized controller and analyze its behavior and/or performance. Traditional robot learning, on the contrary, relies on dynamical system-based policies that can be analyzed for stability/safety. Such policies, however, are neither flexible nor generic and usually work only with proprioceptive sensor states. In this work, we bridge the gap between generic neural network policies and dynamical system-based policies, and we introduce Autonomous Neural Dynamic Policies (ANDPs) that: (a) are based on autonomous dynamical systems, (b) always produce asymptotically stable behaviors, and (c) are more flexible than traditional stable dynamical system-based policies. ANDPs are fully differentiable, flexible generic-policies that accept any observation input, while ensuring asymptotic stability. Through several experiments, we explore the flexibility and capacity of ANDPs in several imitation learning tasks including experiments with image observations. The results show that ANDPs combine the benefits of both neural network-based and dynamical system-based methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自主神经动态策略的稳定保证感觉运动学习
最先进的感觉运动学习算法,无论是在强化学习还是模仿学习的背景下,提供的策略往往会产生不稳定的行为,破坏机器人和/或环境。此外,很难解释优化后的控制器并分析其行为和/或性能。相反,传统的机器人学习依赖于基于动态系统的策略,可以对其稳定性/安全性进行分析。然而,这种策略既不灵活也不通用,通常只适用于本体感觉传感器状态。在这项工作中,我们弥合了一般神经网络策略和基于动态系统的策略之间的差距,我们引入了自主神经动态策略(ANDPs),它:(a)基于自主动态系统,(b)总是产生渐近稳定的行为,(c)比传统的基于稳定动态系统的策略更灵活。andp是完全可微的,灵活的通用策略,可以接受任何观测输入,同时确保渐近稳定性。通过几个实验,我们探索了andp在几个模仿学习任务中的灵活性和能力,包括图像观察实验。结果表明,ANDPs结合了基于神经网络和基于动力系统方法的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
RA-RRTV*: Risk-Averse RRT* With Local Vine Expansion for Path Planning in Narrow Passages Under Localization Uncertainty Controlling Pneumatic Bending Actuator With Gain-Scheduled Feedforward and Physical Reservoir Computing State Estimation Funabot-Sleeve: A Wearable Device Employing McKibben Artificial Muscles for Haptic Sensation in the Forearm 3D Guidance Law for Flexible Target Enclosing With Inherent Safety Learning Agile Swimming: An End-to-End Approach Without CPGs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1