Ming Meng, Hucheng Zhou, Weifeng Liu, Jing Yang, Honglei Yuan and Zhixing Gan
{"title":"Three-dimensional TiO2 nanobelt array with a disordered surface and oxygen vacancies for boosted photoelectrochemical water splitting†","authors":"Ming Meng, Hucheng Zhou, Weifeng Liu, Jing Yang, Honglei Yuan and Zhixing Gan","doi":"10.1039/D4NJ03722G","DOIUrl":null,"url":null,"abstract":"<p >The exploitation of photoelectrode materials with high-efficiency utilization of solar light, an outstanding separation property of photogenerated charges and a large surface area is extremely important yet significantly challenging. Herein, a three-dimensional array of reduced TiO<small><sub>2</sub></small> nanobelts with a disordered surface and abundant oxygen vacancies was successfully constructed for PEC water splitting. As expected, the reduced 3D-TiO<small><sub>2</sub></small> nanobelt array produced a photocurrent density of 0.96 mA cm<small><sup>−2</sup></small> at 0.22 V <em>vs.</em> Ag/AgCl with a faradaic efficiency of 100%, corresponding to 2.4 times enhancement compared with that of the pristine 3D-TiO<small><sub>2</sub></small> nanobelt array. Furthermore, IPCE was improved within both the UV and visible light regions. This enhancement originates primarily from the efficient utilization of UV-visible light as well as the promoted separation and transport of photogenerated charges induced by the cooperative effect of the disordered surface and oxygen vacancies. This research sheds new light on exploiting TiO<small><sub>2</sub></small> nanobelts for PEC applications.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 3","pages":" 886-892"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj03722g","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The exploitation of photoelectrode materials with high-efficiency utilization of solar light, an outstanding separation property of photogenerated charges and a large surface area is extremely important yet significantly challenging. Herein, a three-dimensional array of reduced TiO2 nanobelts with a disordered surface and abundant oxygen vacancies was successfully constructed for PEC water splitting. As expected, the reduced 3D-TiO2 nanobelt array produced a photocurrent density of 0.96 mA cm−2 at 0.22 V vs. Ag/AgCl with a faradaic efficiency of 100%, corresponding to 2.4 times enhancement compared with that of the pristine 3D-TiO2 nanobelt array. Furthermore, IPCE was improved within both the UV and visible light regions. This enhancement originates primarily from the efficient utilization of UV-visible light as well as the promoted separation and transport of photogenerated charges induced by the cooperative effect of the disordered surface and oxygen vacancies. This research sheds new light on exploiting TiO2 nanobelts for PEC applications.