Yeting Tao, Yaotian Zhang, Shiying Hu, Jian Wang, Yuying Wu, Wenbo Yuan, Wei Yao and Youtian Tao
{"title":"Cyanocarbazole-based bipolar host materials for efficient phosphorescent and thermally activated delayed fluorescence OLEDs†","authors":"Yeting Tao, Yaotian Zhang, Shiying Hu, Jian Wang, Yuying Wu, Wenbo Yuan, Wei Yao and Youtian Tao","doi":"10.1039/D4NJ03124E","DOIUrl":null,"url":null,"abstract":"<p >The investigation of suitable organic host materials is crucial for the development of high-efficiency triplet exciton-based organic light emitting diodes (OLEDs). In this study, two isomeric carbazole/1,3,5-triazine hybrid bipolar-transport host materials <em>o</em>-3CN-TRZ and <em>o</em>-4CN-TRZ are developed. The alteration of cyano substitution from the 3- to the 4-position of carbazole resulted in a slight reduction in the HOMO levels from −5.80 to −5.87 eV, accompanied by a gentle decline in the singlet/triplet energy levels. This was evidenced by a shift in the fluorescence emission peak from 450 to 474 nm and the observation of relatively high triplet energies of 2.79 and 2.77 eV for <em>o</em>-3CN-TRZ and <em>o</em>-4CN-TRZ, respectively. Notably, compared to the bare carbazole-based model compound <em>o</em>-Cz-TRZ, the introduction of a cyano group at either the 3- or the 4-position led to a notable enhancement in the electron-transport properties. However, the hole-transport behavior of <em>o</em>-3CN-TRZ was evidently inferior to that of <em>o</em>-4CN-TRZ. Therefore, when employed as host materials for both phosphorescence and thermally activated delayed fluorescence OLEDs, <em>o</em>-4CN-TRZ hosted devices all exhibited higher efficiencies than <em>o</em>-3CN-TRZ. Maximum external quantum efficiencies of 20.5, 16.8 and 16.9% <em>versus</em> 19.6, 12.5 and 13.8% were achieved for green phosphorescent (ppy)<small><sub>2</sub></small>Ir(acac), greenish-yellow TADF 4tCzDOXD and 4tCzCNPy-based devices, respectively.</p>","PeriodicalId":95,"journal":{"name":"New Journal of Chemistry","volume":" 3","pages":" 935-942"},"PeriodicalIF":2.7000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Journal of Chemistry","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nj/d4nj03124e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The investigation of suitable organic host materials is crucial for the development of high-efficiency triplet exciton-based organic light emitting diodes (OLEDs). In this study, two isomeric carbazole/1,3,5-triazine hybrid bipolar-transport host materials o-3CN-TRZ and o-4CN-TRZ are developed. The alteration of cyano substitution from the 3- to the 4-position of carbazole resulted in a slight reduction in the HOMO levels from −5.80 to −5.87 eV, accompanied by a gentle decline in the singlet/triplet energy levels. This was evidenced by a shift in the fluorescence emission peak from 450 to 474 nm and the observation of relatively high triplet energies of 2.79 and 2.77 eV for o-3CN-TRZ and o-4CN-TRZ, respectively. Notably, compared to the bare carbazole-based model compound o-Cz-TRZ, the introduction of a cyano group at either the 3- or the 4-position led to a notable enhancement in the electron-transport properties. However, the hole-transport behavior of o-3CN-TRZ was evidently inferior to that of o-4CN-TRZ. Therefore, when employed as host materials for both phosphorescence and thermally activated delayed fluorescence OLEDs, o-4CN-TRZ hosted devices all exhibited higher efficiencies than o-3CN-TRZ. Maximum external quantum efficiencies of 20.5, 16.8 and 16.9% versus 19.6, 12.5 and 13.8% were achieved for green phosphorescent (ppy)2Ir(acac), greenish-yellow TADF 4tCzDOXD and 4tCzCNPy-based devices, respectively.