Effect of liquid media, waiting time, and layer height on drop-weight impact performance of polylactic acid produced by additive manufacturing

IF 2.6 4区 化学 Q3 POLYMER SCIENCE Journal of Polymer Research Pub Date : 2025-01-14 DOI:10.1007/s10965-025-04259-6
Çağın Bolat, Batuhan Üresin, Tan Eftal Gene, Abdulkadir Çebi, Muhammed Turan Aslan
{"title":"Effect of liquid media, waiting time, and layer height on drop-weight impact performance of polylactic acid produced by additive manufacturing","authors":"Çağın Bolat,&nbsp;Batuhan Üresin,&nbsp;Tan Eftal Gene,&nbsp;Abdulkadir Çebi,&nbsp;Muhammed Turan Aslan","doi":"10.1007/s10965-025-04259-6","DOIUrl":null,"url":null,"abstract":"<div><p>Fusion deposition modeling (FDM) has developed remarkably over the last few decades as an innovative and versatile method of producing objects with complex design details. Polylactic acid (PLA), a bio-based polymer, is one of the most widely used thermoplastics in fabricating products with FDM due to its favorable mechanical properties, relatively low cost, and recyclability. However, most PLA studies in the literature have focused on evaluating its mechanical performance according to the 3D-printed parts to changing FDM parameters. This experimental study tries to elucidate high-speed mechanical performance of PLA samples at different waiting times depending on varying media such as dry, seawater, and distilled water. It aims to form a scientific bridge between the liquid absorption and high-speed deformation behavior of 3D-printed PLA. In addition, samples with three different layer heights were produced to investigate the combined effect of these media and process parameters on FDM parameters. Low-speed tensile tests, hardness tests, drop-weight impact tests, and damage inspections were carried out to analyze the samples thoroughly. These results indicated that there was an affirmative relation between the hardness values and layer height levels. The maximum drop weight force value was obtained in dry samples with 0.2 mm layer height. In addition, the maximum force was higher for samples stored in seawater than for other samples. The specific absorbed energy (SAE) value of the samples at 0.2 mm layer height after 15 days of waiting time was superior to that of the dry sample.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-025-04259-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Fusion deposition modeling (FDM) has developed remarkably over the last few decades as an innovative and versatile method of producing objects with complex design details. Polylactic acid (PLA), a bio-based polymer, is one of the most widely used thermoplastics in fabricating products with FDM due to its favorable mechanical properties, relatively low cost, and recyclability. However, most PLA studies in the literature have focused on evaluating its mechanical performance according to the 3D-printed parts to changing FDM parameters. This experimental study tries to elucidate high-speed mechanical performance of PLA samples at different waiting times depending on varying media such as dry, seawater, and distilled water. It aims to form a scientific bridge between the liquid absorption and high-speed deformation behavior of 3D-printed PLA. In addition, samples with three different layer heights were produced to investigate the combined effect of these media and process parameters on FDM parameters. Low-speed tensile tests, hardness tests, drop-weight impact tests, and damage inspections were carried out to analyze the samples thoroughly. These results indicated that there was an affirmative relation between the hardness values and layer height levels. The maximum drop weight force value was obtained in dry samples with 0.2 mm layer height. In addition, the maximum force was higher for samples stored in seawater than for other samples. The specific absorbed energy (SAE) value of the samples at 0.2 mm layer height after 15 days of waiting time was superior to that of the dry sample.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Polymer Research
Journal of Polymer Research 化学-高分子科学
CiteScore
4.70
自引率
7.10%
发文量
472
审稿时长
3.6 months
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including: polymer synthesis; polymer reactions; polymerization kinetics; polymer physics; morphology; structure-property relationships; polymer analysis and characterization; physical and mechanical properties; electrical and optical properties; polymer processing and rheology; application of polymers; supramolecular science of polymers; polymer composites.
期刊最新文献
Electrospun poly(acrylonitrile) and poly(ethylene glycol) composite nanofibers incorporated with Gd2O3 NPs for energy storage applications Effects of Tb(NO3)3 salt on the structural characteristics, optical, and radiation shielding properties of (PVA-PVP- PEG) polymeric composite films Synthesis and morphology control of a tetra-functional epoxy/polyethylenepolyamine monolithic porous polymers aspiring to selective molecular adsorption Effect of liquid media, waiting time, and layer height on drop-weight impact performance of polylactic acid produced by additive manufacturing Novel waterborne polyurethanes extended by glycerol monostearate: their synthesis and application to water repellency
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1