Dayton J. Vogel, Tomas F. Babuska, Alexander Mings, Peter A. MacDonell, John F. Curry, Steven R. Larson, Michael T. Dugger
{"title":"Harnessing Machine Learning to Predict MoS2 Solid Lubricant Performance","authors":"Dayton J. Vogel, Tomas F. Babuska, Alexander Mings, Peter A. MacDonell, John F. Curry, Steven R. Larson, Michael T. Dugger","doi":"10.1007/s11249-024-01957-y","DOIUrl":null,"url":null,"abstract":"<div><p>Physical vapor deposited (PVD) molybdenum disulfide (MoS<sub>2</sub>) solid lubricant coatings are an exemplar material system for machine learning methods due to small changes in process variables often causing large variations in microstructure and mechanical/tribological properties. In this work, a gradient boosted regression tree machine learning method is applied to an existing experimental data set containing process, microstructure, and property information to create deeper insights into the process-structure–property relationships for molybdenum disulfide (MoS<sub>2</sub>) solid lubricant coatings. The optimized and cross-validated models show good predictive capabilities for density, reduced modulus, hardness, wear rate, and initial coefficients of friction. The contribution of individual deposition variables (i.e., argon pressure, deposition power, target conditioning) on coating properties is highlighted through feature importance. The process-property relationships established herein show linear and non-linear relationships and highlight the influence of uncontrolled deposition variables (i.e., target conditioning) on the tribological performance.</p></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"73 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01957-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Physical vapor deposited (PVD) molybdenum disulfide (MoS2) solid lubricant coatings are an exemplar material system for machine learning methods due to small changes in process variables often causing large variations in microstructure and mechanical/tribological properties. In this work, a gradient boosted regression tree machine learning method is applied to an existing experimental data set containing process, microstructure, and property information to create deeper insights into the process-structure–property relationships for molybdenum disulfide (MoS2) solid lubricant coatings. The optimized and cross-validated models show good predictive capabilities for density, reduced modulus, hardness, wear rate, and initial coefficients of friction. The contribution of individual deposition variables (i.e., argon pressure, deposition power, target conditioning) on coating properties is highlighted through feature importance. The process-property relationships established herein show linear and non-linear relationships and highlight the influence of uncontrolled deposition variables (i.e., target conditioning) on the tribological performance.
期刊介绍:
Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.