{"title":"Dispersion relations of relativistic radiation hydrodynamics","authors":"Lorenzo Gavassino","doi":"10.1007/s10509-025-04395-x","DOIUrl":null,"url":null,"abstract":"<div><p>We compute the linearised dispersion relations of shear waves, heat waves, and sound waves in relativistic “matter+radiation” fluids with grey absorption opacities. This is done by solving radiation hydrodynamics perturbatively in the ratio “radiation stress-energy”/“matter stress-energy”. The resulting expressions <span>\\(\\omega \\, {=} \\, \\omega (k)\\)</span> accurately describe the hydrodynamic evolution for any <span>\\(k\\, {\\in }\\, \\mathbb{R}\\)</span>. General features of the dynamics (e.g., covariant stability, propagation speeds, and damping of discontinuities) are argued directly from the analytic form of these dispersion relations.</p></div>","PeriodicalId":8644,"journal":{"name":"Astrophysics and Space Science","volume":"370 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10509-025-04395-x.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysics and Space Science","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10509-025-04395-x","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
We compute the linearised dispersion relations of shear waves, heat waves, and sound waves in relativistic “matter+radiation” fluids with grey absorption opacities. This is done by solving radiation hydrodynamics perturbatively in the ratio “radiation stress-energy”/“matter stress-energy”. The resulting expressions \(\omega \, {=} \, \omega (k)\) accurately describe the hydrodynamic evolution for any \(k\, {\in }\, \mathbb{R}\). General features of the dynamics (e.g., covariant stability, propagation speeds, and damping of discontinuities) are argued directly from the analytic form of these dispersion relations.
期刊介绍:
Astrophysics and Space Science publishes original contributions and invited reviews covering the entire range of astronomy, astrophysics, astrophysical cosmology, planetary and space science and the astrophysical aspects of astrobiology. This includes both observational and theoretical research, the techniques of astronomical instrumentation and data analysis and astronomical space instrumentation. We particularly welcome papers in the general fields of high-energy astrophysics, astrophysical and astrochemical studies of the interstellar medium including star formation, planetary astrophysics, the formation and evolution of galaxies and the evolution of large scale structure in the Universe. Papers in mathematical physics or in general relativity which do not establish clear astrophysical applications will no longer be considered.
The journal also publishes topically selected special issues in research fields of particular scientific interest. These consist of both invited reviews and original research papers. Conference proceedings will not be considered. All papers published in the journal are subject to thorough and strict peer-reviewing.
Astrophysics and Space Science features short publication times after acceptance and colour printing free of charge.