TSHDNet: temporal-spatial heterogeneity decoupling network for multi-mode traffic flow prediction

IF 3.4 2区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Applied Intelligence Pub Date : 2025-01-14 DOI:10.1007/s10489-024-06218-y
Mei Wu, Wenchao Weng, Xinran Wang, Dewen Seng
{"title":"TSHDNet: temporal-spatial heterogeneity decoupling network for multi-mode traffic flow prediction","authors":"Mei Wu,&nbsp;Wenchao Weng,&nbsp;Xinran Wang,&nbsp;Dewen Seng","doi":"10.1007/s10489-024-06218-y","DOIUrl":null,"url":null,"abstract":"<div><p>Given the intricate spatial dependencies and dynamic trends among diverse road segments, the prediction of spatio-temporal traffic flow data presents a formidable challenge. To address this challenge within the complexity of urban multi-mode transportation systems, this paper introduces an innovative solution. Anchored by the TSHDNet framework, the proposed methodology presents a novel spatio-temporal heterogeneous decoupling network that adeptly captures the inherent relationships between traffic patterns and temporal-spatial fluctuations. By seamlessly integrating temporal and nodal embeddings, dynamic graph learning, and multi-scale representation modules, TSHDNet demonstrates remarkable efficacy in unraveling the subtle dynamics of traffic flow. Empirical evaluations and ablation experiments conducted on four real-world datasets affirm the framework’s capability and the effectiveness of the decoupling approach.The source codes are available at: https://github.com/MeiWu2/TSHDNet.git</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-06218-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Given the intricate spatial dependencies and dynamic trends among diverse road segments, the prediction of spatio-temporal traffic flow data presents a formidable challenge. To address this challenge within the complexity of urban multi-mode transportation systems, this paper introduces an innovative solution. Anchored by the TSHDNet framework, the proposed methodology presents a novel spatio-temporal heterogeneous decoupling network that adeptly captures the inherent relationships between traffic patterns and temporal-spatial fluctuations. By seamlessly integrating temporal and nodal embeddings, dynamic graph learning, and multi-scale representation modules, TSHDNet demonstrates remarkable efficacy in unraveling the subtle dynamics of traffic flow. Empirical evaluations and ablation experiments conducted on four real-world datasets affirm the framework’s capability and the effectiveness of the decoupling approach.The source codes are available at: https://github.com/MeiWu2/TSHDNet.git

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TSHDNet:多模式交通流时空异质性解耦网络
鉴于不同路段之间复杂的空间依赖关系和动态趋势,交通流的时空预测面临着巨大的挑战。为了在复杂的城市多模式交通系统中解决这一挑战,本文介绍了一种创新的解决方案。该方法以TSHDNet框架为基础,提出了一种新颖的时空异构解耦网络,能够熟练地捕捉交通模式与时空波动之间的内在关系。通过无缝集成时间和节点嵌入、动态图学习和多尺度表示模块,TSHDNet在揭示交通流的微妙动态方面表现出显著的效果。在四个真实数据集上进行的实证评估和消融实验证实了该框架的能力和解耦方法的有效性。源代码可从https://github.com/MeiWu2/TSHDNet.git获得
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Intelligence
Applied Intelligence 工程技术-计算机:人工智能
CiteScore
6.60
自引率
20.80%
发文量
1361
审稿时长
5.9 months
期刊介绍: With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance. The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.
期刊最新文献
Insulator defect detection from aerial images in adverse weather conditions A review of the emotion recognition model of robots Knowledge guided relation enhancement for human-object interaction detection A modified dueling DQN algorithm for robot path planning incorporating priority experience replay and artificial potential fields A non-parameter oversampling approach for imbalanced data classification based on hybrid natural neighbors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1