Souad Mokhliss, Tiina Laitinen, Abdelouahab El Hadrami, Satu Ojala, Rachid Brahmi, Mahfoud Agunaou
{"title":"Low-temperature catalytic oxidation of ethanol over doped nickel phosphates.","authors":"Souad Mokhliss, Tiina Laitinen, Abdelouahab El Hadrami, Satu Ojala, Rachid Brahmi, Mahfoud Agunaou","doi":"10.1007/s11356-024-35856-5","DOIUrl":null,"url":null,"abstract":"<p><p>This work is focused on the synthesis and performance of Ni<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>-based catalysts doped with Cu, Co, Mn, Ce, Zr, and Mg for the complete oxidation of ethanol, aiming at reducing emissions from ethanol-blended gasoline. Nickel phosphate was prepared via the co-precipitation method, followed by impregnation with the specified dopants. The catalysts were thoroughly characterized by XRD, N<sub>2</sub>-physisorption, XRF, FTIR and Raman spectroscopy, FESEM, NH<sub>3</sub>-TPD, CO<sub>2</sub>-TPD, and H<sub>2</sub>-TPR to explain their performance. All catalysts achieved complete ethanol conversion (100%) at a temperature below 320 °C. The performance of the catalysts was strongly influenced by the dopant type of which Co, Ce, Mn, and Mg showed high CO<sub>2</sub> selectivity (selectivity > 90% at 95% ethanol conversion temperature (T<sub>95</sub>)). The mechanism of oxidation is affected by the acido-basicity of the catalysts and the redox properties leading to a reaction through ethylene formation over the acid catalysts and acetaldehyde over the basic catalysts. The redox properties of the doped catalysts play a crucial role in enhancing the catalytic activity and selectivity toward CO₂, as the redox-active dopants facilitate the activation of oxygen species, which are essential for the complete oxidation of ethanol. In particular, Co and Ce demonstrated superior redox characteristics, facilitating the conversion of intermediate species and leading to higher CO<sub>2</sub> selectivity while minimizing undesirable by-products.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35856-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
This work is focused on the synthesis and performance of Ni3(PO4)2-based catalysts doped with Cu, Co, Mn, Ce, Zr, and Mg for the complete oxidation of ethanol, aiming at reducing emissions from ethanol-blended gasoline. Nickel phosphate was prepared via the co-precipitation method, followed by impregnation with the specified dopants. The catalysts were thoroughly characterized by XRD, N2-physisorption, XRF, FTIR and Raman spectroscopy, FESEM, NH3-TPD, CO2-TPD, and H2-TPR to explain their performance. All catalysts achieved complete ethanol conversion (100%) at a temperature below 320 °C. The performance of the catalysts was strongly influenced by the dopant type of which Co, Ce, Mn, and Mg showed high CO2 selectivity (selectivity > 90% at 95% ethanol conversion temperature (T95)). The mechanism of oxidation is affected by the acido-basicity of the catalysts and the redox properties leading to a reaction through ethylene formation over the acid catalysts and acetaldehyde over the basic catalysts. The redox properties of the doped catalysts play a crucial role in enhancing the catalytic activity and selectivity toward CO₂, as the redox-active dopants facilitate the activation of oxygen species, which are essential for the complete oxidation of ethanol. In particular, Co and Ce demonstrated superior redox characteristics, facilitating the conversion of intermediate species and leading to higher CO2 selectivity while minimizing undesirable by-products.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.