Lateral flow assay with automatic signal amplification based on delayed substrate release.

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL Talanta Pub Date : 2025-05-01 Epub Date: 2025-01-13 DOI:10.1016/j.talanta.2025.127557
Yue Sun, Minxin Mao, Shengmei Tai, Mengjia Chao, Hengyu Xu, Yina Cai, Chifang Peng, Wei Ma, Zhouping Wang
{"title":"Lateral flow assay with automatic signal amplification based on delayed substrate release.","authors":"Yue Sun, Minxin Mao, Shengmei Tai, Mengjia Chao, Hengyu Xu, Yina Cai, Chifang Peng, Wei Ma, Zhouping Wang","doi":"10.1016/j.talanta.2025.127557","DOIUrl":null,"url":null,"abstract":"<p><p>The low sensitivity of Lateral flow assay (LFA) limits its application in rapid detection for trace targets. LFAs with nanozyme (nanozyme-LFA) as signal labels have demonstrated excellent performance in point of care testing (POCT). However, additional operational steps for substrate catalysis in nanozyme LFA are required, which makes the nanozyme-LFA operation complicated. In this work, we designed a LFA based on delayed substrate release (SGF-LFA), in which a commercialized glass fiber membrane embedded with substrate (SGF) was fixed at the sample pad. The SGF could automatically execute substrate delivery and catalysis, thus eventually achieving a one-step LFA operation for the nucleic acid detection of influenza A virus H1N1. In this SGF-LFA, 3,3 '- diaminobenzidine (DAB) was oxidized and deposited, producing a strong signal amplification under the catalysis of Au@PtNP nanozyme. The SGF-LFA could detect the nucleic acid of H1N1, with a linear range of 0.02-50 nM and a limit of detection (LOD) as low as 0.02 nM, which was 25-fold lower than that of the nanozyme-LFA before catalysis. In addition, the analytical performance was close to that of a manual operation mode of catalysis amplification. The application of SGF-LFA for detecting the H1N1 nucleic acid in serum samples obtained a recovery rate of 96 %-102.7 %, indicating that SGF-LFA has great potential in point-of-care testing.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127557"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.127557","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The low sensitivity of Lateral flow assay (LFA) limits its application in rapid detection for trace targets. LFAs with nanozyme (nanozyme-LFA) as signal labels have demonstrated excellent performance in point of care testing (POCT). However, additional operational steps for substrate catalysis in nanozyme LFA are required, which makes the nanozyme-LFA operation complicated. In this work, we designed a LFA based on delayed substrate release (SGF-LFA), in which a commercialized glass fiber membrane embedded with substrate (SGF) was fixed at the sample pad. The SGF could automatically execute substrate delivery and catalysis, thus eventually achieving a one-step LFA operation for the nucleic acid detection of influenza A virus H1N1. In this SGF-LFA, 3,3 '- diaminobenzidine (DAB) was oxidized and deposited, producing a strong signal amplification under the catalysis of Au@PtNP nanozyme. The SGF-LFA could detect the nucleic acid of H1N1, with a linear range of 0.02-50 nM and a limit of detection (LOD) as low as 0.02 nM, which was 25-fold lower than that of the nanozyme-LFA before catalysis. In addition, the analytical performance was close to that of a manual operation mode of catalysis amplification. The application of SGF-LFA for detecting the H1N1 nucleic acid in serum samples obtained a recovery rate of 96 %-102.7 %, indicating that SGF-LFA has great potential in point-of-care testing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于延迟底物释放的自动信号放大横向流动试验。
横向流动法灵敏度低,限制了其在痕量靶标快速检测中的应用。以纳米酶(nanoenzyme - lfa)作为信号标记的lfa在护理点检测(POCT)中表现出优异的性能。然而,在纳米酶LFA中,底物催化需要额外的操作步骤,这使得纳米酶-LFA操作变得复杂。在这项工作中,我们设计了一种基于衬底延迟释放(SGF-LFA)的LFA,其中将嵌入衬底的商品化玻璃纤维膜(SGF)固定在样品垫上。SGF可以自动执行底物递送和催化,最终实现一步LFA操作,用于甲型流感病毒H1N1核酸检测。在这个SGF-LFA中,3,3 '-二氨基联苯胺(DAB)在Au@PtNP纳米酶的催化下被氧化沉积,产生强烈的信号放大。SGF-LFA能检测H1N1病毒核酸,线性范围为0.02 ~ 50 nM,检出限(LOD)低至0.02 nM,比催化前的纳米酶- lfa低25倍。此外,分析性能接近于催化扩增的手动操作模式。应用SGF-LFA检测血清样品中的H1N1核酸,回收率为96% ~ 102.7%,表明SGF-LFA在护理点检测中具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
期刊最新文献
Gas and vapor phase detection of chemical threats on cooled SERS substrates. A ratiometric fluorescent probe with dual near infrared emission for in vivo ratio imaging of cysteine. A novel method for detecting genetic biomarkers in blood-based liquid biopsies using surface plasmon resonance imaging and magnetic beads shows promise in cancer diagnosis and monitoring. A signal amplifying MOF-based probe:on-site and ultrasensitive dual-channel portable detection of Hg2+ in groundwater through a fluorimetrically and RGB-based sensing assay. Adding colour to ion-selective membranes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1