Novel multiparameter optical sensor head design for marine environments.

IF 5.6 1区 化学 Q1 CHEMISTRY, ANALYTICAL Talanta Pub Date : 2025-01-10 DOI:10.1016/j.talanta.2025.127571
Sean Power, Louis Free, Ciprian Briciu-Burghina, Chloe Richards, Adrian Delgado, Elena Gomez-Alvarez, Nigel Kent, Fiona Regan
{"title":"Novel multiparameter optical sensor head design for marine environments.","authors":"Sean Power, Louis Free, Ciprian Briciu-Burghina, Chloe Richards, Adrian Delgado, Elena Gomez-Alvarez, Nigel Kent, Fiona Regan","doi":"10.1016/j.talanta.2025.127571","DOIUrl":null,"url":null,"abstract":"<p><p>Anthropogenic activities have led to increased stress on our marine and other aquatic environments. There is a pressing need to monitor, measure, understand and mitigate causes of these pressures. This paper presents a novel optical head for monitoring and measuring marine based optical phenomena. The development and preliminary testing of the optical head were designed to detect optically active constituents in the marine and coastal environments. Potential applications may include the detection of Harmful Algal Blooms (HAB), which due to their production of toxins have deleterious effects on marine ecosystems, dissolved organic matter (DOM), oil spills, through the measurement of dissolved fluorescent petroleum compounds and turbidity, a key metric in marine and water quality measurements. Preliminary laboratory based results indicate that the optical head is well suited for measuring in-vivo Chlorophyll a (Chl a) fluorescence, turbidity, fluorescent dissolved organic matter (fDOM) and petroleum. For turbidity and in-vivo Chl a, analytical performance was benchmarked against off-the-shelf commercial sensors. The developed optical head demonstrates good analytical performance with certified reference standards and a very good agreement with the reference instrument.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"286 ","pages":"127571"},"PeriodicalIF":5.6000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.127571","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anthropogenic activities have led to increased stress on our marine and other aquatic environments. There is a pressing need to monitor, measure, understand and mitigate causes of these pressures. This paper presents a novel optical head for monitoring and measuring marine based optical phenomena. The development and preliminary testing of the optical head were designed to detect optically active constituents in the marine and coastal environments. Potential applications may include the detection of Harmful Algal Blooms (HAB), which due to their production of toxins have deleterious effects on marine ecosystems, dissolved organic matter (DOM), oil spills, through the measurement of dissolved fluorescent petroleum compounds and turbidity, a key metric in marine and water quality measurements. Preliminary laboratory based results indicate that the optical head is well suited for measuring in-vivo Chlorophyll a (Chl a) fluorescence, turbidity, fluorescent dissolved organic matter (fDOM) and petroleum. For turbidity and in-vivo Chl a, analytical performance was benchmarked against off-the-shelf commercial sensors. The developed optical head demonstrates good analytical performance with certified reference standards and a very good agreement with the reference instrument.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Talanta
Talanta 化学-分析化学
CiteScore
12.30
自引率
4.90%
发文量
861
审稿时长
29 days
期刊介绍: Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome. Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.
期刊最新文献
Retraction Notice to "Fabrication of a novel sensor based on Cu quantum dot and SH-SiO2 nanoparticles supported on copper-based metal organic framework (Cu QD-SH-SiO2@Cu-MOF) and its application for the simultaneous determination of norepinephrine, piroxicam and epinephrine" [Talanta 252 (2023) 123776]. An innovative fluorescent probe for monitoring of ONOO- in multiple liver-injury models. Aptamer-functionalized magnetic blade spray coupled with a nucleic acid dye-based mass tag strategy for miniature mass spectrometry analysis of endoglin. Design and synthesis of esterase-activated fluorescent probe for diagnosis and surgical guidance of liver cancer. Exploring the role of graphene-metal hybrid nanomaterials as Raman signal enhancers in early stage cancer detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1