The tradeoff between the efficacy of calcineurin inhibitors: prevention of allograft rejection vs. post-transplant renal and cardiovascular complications.

IF 5.7 2区 医学 Q1 TOXICOLOGY Critical Reviews in Toxicology Pub Date : 2025-01-14 DOI:10.1080/10408444.2024.2433631
Kalpanarani Dash, Monalisa Mishra
{"title":"The tradeoff between the efficacy of calcineurin inhibitors: prevention of allograft rejection vs. post-transplant renal and cardiovascular complications.","authors":"Kalpanarani Dash, Monalisa Mishra","doi":"10.1080/10408444.2024.2433631","DOIUrl":null,"url":null,"abstract":"<p><p>Solid organ transplantation has emerged as a crucial intervention in the field of medicine. During transplantation, our human body perceives the organ as an exogenous entity or graft, initiating an immune reaction to eliminate it. This immune response ultimately culminates in the rejection of the graft. So, to mitigate the possibility of graft rejection, implementing immune suppression is imperative. In this context, the utilization of calcineurin inhibitors (CNIs) assumes a pivotal role. Calcineurin inhibitors significantly preserve immunosuppression following solid organ transplantation. Calcineurin inhibitors have considerably improved short-term results in renal transplantation by reducing acute rejection rates. Concerning the limited therapeutic window of these medications, careful monitoring of pharmacological treatment and individual doses is required. However, a significant number of patients do experience CNI toxicity. Side effects of CNIs include renal failure, hypertension, respiratory disorders, gastrointestinal damage, gingivitis, and so on. Higher trough level of the drug causes acute nephrotoxicity, which is of three types: functional toxicity, tubular toxicity, and vascular toxicity. Acute nephrotoxicity, if untreated, leads to irreversible, progressive deterioration of allograft function, leading to chronic nephrotoxicity. Cardiovascular toxicity of CNIs includes atrial hypertension caused by vasoconstriction of the afferent arteriole, vascular remodeling, hypertrophy, dyslipidemia, and also the onset of diabetes. Such clinical complications further affect the patient's survivability and subjective well-being, possibly leading to graft loss. This review focuses on the most severe side effects of CNIs: renal and cardiovascular toxicity.</p>","PeriodicalId":10869,"journal":{"name":"Critical Reviews in Toxicology","volume":" ","pages":"1-17"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/10408444.2024.2433631","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Solid organ transplantation has emerged as a crucial intervention in the field of medicine. During transplantation, our human body perceives the organ as an exogenous entity or graft, initiating an immune reaction to eliminate it. This immune response ultimately culminates in the rejection of the graft. So, to mitigate the possibility of graft rejection, implementing immune suppression is imperative. In this context, the utilization of calcineurin inhibitors (CNIs) assumes a pivotal role. Calcineurin inhibitors significantly preserve immunosuppression following solid organ transplantation. Calcineurin inhibitors have considerably improved short-term results in renal transplantation by reducing acute rejection rates. Concerning the limited therapeutic window of these medications, careful monitoring of pharmacological treatment and individual doses is required. However, a significant number of patients do experience CNI toxicity. Side effects of CNIs include renal failure, hypertension, respiratory disorders, gastrointestinal damage, gingivitis, and so on. Higher trough level of the drug causes acute nephrotoxicity, which is of three types: functional toxicity, tubular toxicity, and vascular toxicity. Acute nephrotoxicity, if untreated, leads to irreversible, progressive deterioration of allograft function, leading to chronic nephrotoxicity. Cardiovascular toxicity of CNIs includes atrial hypertension caused by vasoconstriction of the afferent arteriole, vascular remodeling, hypertrophy, dyslipidemia, and also the onset of diabetes. Such clinical complications further affect the patient's survivability and subjective well-being, possibly leading to graft loss. This review focuses on the most severe side effects of CNIs: renal and cardiovascular toxicity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.50
自引率
1.70%
发文量
29
期刊介绍: Critical Reviews in Toxicology provides up-to-date, objective analyses of topics related to the mechanisms of action, responses, and assessment of health risks due to toxicant exposure. The journal publishes critical, comprehensive reviews of research findings in toxicology and the application of toxicological information in assessing human health hazards and risks. Toxicants of concern include commodity and specialty chemicals such as formaldehyde, acrylonitrile, and pesticides; pharmaceutical agents of all types; consumer products such as macronutrients and food additives; environmental agents such as ambient ozone; and occupational exposures such as asbestos and benzene.
期刊最新文献
The tradeoff between the efficacy of calcineurin inhibitors: prevention of allograft rejection vs. post-transplant renal and cardiovascular complications. A weight of evidence review on the mode of action, adversity, and the human relevance of xylene's observed thyroid effects in rats. Use and limitations of clinical data in the identification and classification of low molecular weight chemicals (LMWCs) as respiratory sensitizers: recommendations for improvement. Microbial degradation mechanisms, degradation pathways, and genetic engineering for pyrethroids: current knowledge and future perspectives. Construction of a risk prediction model of diquat poisoning based on clinical indicators.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1