Quang Hien Kha, Huu Phuc Lam Nguyen, Nguyen Quoc Khanh Le
{"title":"A Deep Learning and PSSM Profile Approach for Accurate SNARE Protein Prediction.","authors":"Quang Hien Kha, Huu Phuc Lam Nguyen, Nguyen Quoc Khanh Le","doi":"10.1007/978-1-0716-4314-3_5","DOIUrl":null,"url":null,"abstract":"<p><p>SNARE proteins play a pivotal role in membrane fusion and various cellular processes. Accurate identification of SNARE proteins is crucial for elucidating their functions in both health and disease contexts. This chapter presents a novel approach employing multiscan convolutional neural networks (CNNs) combined with position-specific scoring matrix (PSSM) profiles to accurately recognize SNARE proteins. By leveraging deep learning techniques, our method significantly enhances the accuracy and efficacy of SNARE protein classification. We detail the step-by-step methodology, including dataset preparation, feature extraction using PSI-BLAST, and the design of the multiscan CNN architecture. Our results demonstrate that this approach outperforms existing methods, providing a robust and reliable tool for bioinformatics research.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2887 ","pages":"79-89"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4314-3_5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
SNARE proteins play a pivotal role in membrane fusion and various cellular processes. Accurate identification of SNARE proteins is crucial for elucidating their functions in both health and disease contexts. This chapter presents a novel approach employing multiscan convolutional neural networks (CNNs) combined with position-specific scoring matrix (PSSM) profiles to accurately recognize SNARE proteins. By leveraging deep learning techniques, our method significantly enhances the accuracy and efficacy of SNARE protein classification. We detail the step-by-step methodology, including dataset preparation, feature extraction using PSI-BLAST, and the design of the multiscan CNN architecture. Our results demonstrate that this approach outperforms existing methods, providing a robust and reliable tool for bioinformatics research.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.