{"title":"Dynamic reconfiguration of default and frontoparietal network supports creative incubation.","authors":"Ziyi Li, Ze Zhang, Tengteng Tan, Jing Luo","doi":"10.1016/j.neuroimage.2025.121021","DOIUrl":null,"url":null,"abstract":"<p><p>Although creative ideas often emerge during distraction activities unrelated to the creative task, empirical research has yet to reveal the underlying neurocognitive mechanism. Using an incubation paradigm, we temporarily disengaged participants from the initial creative ideation task and required them to conduct two different distraction activities (moderately-demanding: 1-back working memory task, non-demanding: 0-back choice reaction time task), then returned them to the previous creative task. On the process of creative ideation, we calculated the representational dissimilarities between the two creative ideation phases before and after incubation period to estimate the neural representational change underlying successful incubation. The results found that, for the 0-back condition, successful incubation was associated with the representational change in precuneus (PCU), whereas for the 1-back condition, it was associated with change in rostrolateral PFC (rlPFC), suggesting the dual processes of the DMN-mediated associative thinking and PFC-mediated controlled thinking for the 0- or the 1-back incubation conditions to prompt creation. On the incubation delay, we found the successful incubation in both conditions was accompanied with network integration between frontoparietal (FP) and default mode (DM) network, further suggesting the coupling of the controlled- and associative-thinking for the incubation to work. Moreover, we found the FP-DM integration during incubation period could respectively predict the representational change in PCU or rlPFC in the creative ideation phase of 0- or 1-back condition. This means both conditions benefits from the coordination of the controlled and of the associative thinking in incubation period, but for the representational change in creative ideation phase, 1-back condition relies more on the controlled thinking, whereas the 0-back on the associative ones. Additionally, we created a neural encoding indicator to assess the degree to which temporal activities in the rlPFC or PCU during incubation delay is related to the after-incubation successful problem-solving, and we found a positive relation between this indicator and dynamic reconfiguration of brain networks. This further indicates that FP-DM integration supports creative incubation through offline processing.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"121021"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2025.121021","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Although creative ideas often emerge during distraction activities unrelated to the creative task, empirical research has yet to reveal the underlying neurocognitive mechanism. Using an incubation paradigm, we temporarily disengaged participants from the initial creative ideation task and required them to conduct two different distraction activities (moderately-demanding: 1-back working memory task, non-demanding: 0-back choice reaction time task), then returned them to the previous creative task. On the process of creative ideation, we calculated the representational dissimilarities between the two creative ideation phases before and after incubation period to estimate the neural representational change underlying successful incubation. The results found that, for the 0-back condition, successful incubation was associated with the representational change in precuneus (PCU), whereas for the 1-back condition, it was associated with change in rostrolateral PFC (rlPFC), suggesting the dual processes of the DMN-mediated associative thinking and PFC-mediated controlled thinking for the 0- or the 1-back incubation conditions to prompt creation. On the incubation delay, we found the successful incubation in both conditions was accompanied with network integration between frontoparietal (FP) and default mode (DM) network, further suggesting the coupling of the controlled- and associative-thinking for the incubation to work. Moreover, we found the FP-DM integration during incubation period could respectively predict the representational change in PCU or rlPFC in the creative ideation phase of 0- or 1-back condition. This means both conditions benefits from the coordination of the controlled and of the associative thinking in incubation period, but for the representational change in creative ideation phase, 1-back condition relies more on the controlled thinking, whereas the 0-back on the associative ones. Additionally, we created a neural encoding indicator to assess the degree to which temporal activities in the rlPFC or PCU during incubation delay is related to the after-incubation successful problem-solving, and we found a positive relation between this indicator and dynamic reconfiguration of brain networks. This further indicates that FP-DM integration supports creative incubation through offline processing.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.