Dynamic reconfiguration of default and frontoparietal network supports creative incubation.

IF 4.7 2区 医学 Q1 NEUROIMAGING NeuroImage Pub Date : 2025-01-11 DOI:10.1016/j.neuroimage.2025.121021
Ziyi Li, Ze Zhang, Tengteng Tan, Jing Luo
{"title":"Dynamic reconfiguration of default and frontoparietal network supports creative incubation.","authors":"Ziyi Li, Ze Zhang, Tengteng Tan, Jing Luo","doi":"10.1016/j.neuroimage.2025.121021","DOIUrl":null,"url":null,"abstract":"<p><p>Although creative ideas often emerge during distraction activities unrelated to the creative task, empirical research has yet to reveal the underlying neurocognitive mechanism. Using an incubation paradigm, we temporarily disengaged participants from the initial creative ideation task and required them to conduct two different distraction activities (moderately-demanding: 1-back working memory task, non-demanding: 0-back choice reaction time task), then returned them to the previous creative task. On the process of creative ideation, we calculated the representational dissimilarities between the two creative ideation phases before and after incubation period to estimate the neural representational change underlying successful incubation. The results found that, for the 0-back condition, successful incubation was associated with the representational change in precuneus (PCU), whereas for the 1-back condition, it was associated with change in rostrolateral PFC (rlPFC), suggesting the dual processes of the DMN-mediated associative thinking and PFC-mediated controlled thinking for the 0- or the 1-back incubation conditions to prompt creation. On the incubation delay, we found the successful incubation in both conditions was accompanied with network integration between frontoparietal (FP) and default mode (DM) network, further suggesting the coupling of the controlled- and associative-thinking for the incubation to work. Moreover, we found the FP-DM integration during incubation period could respectively predict the representational change in PCU or rlPFC in the creative ideation phase of 0- or 1-back condition. This means both conditions benefits from the coordination of the controlled and of the associative thinking in incubation period, but for the representational change in creative ideation phase, 1-back condition relies more on the controlled thinking, whereas the 0-back on the associative ones. Additionally, we created a neural encoding indicator to assess the degree to which temporal activities in the rlPFC or PCU during incubation delay is related to the after-incubation successful problem-solving, and we found a positive relation between this indicator and dynamic reconfiguration of brain networks. This further indicates that FP-DM integration supports creative incubation through offline processing.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"121021"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2025.121021","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Although creative ideas often emerge during distraction activities unrelated to the creative task, empirical research has yet to reveal the underlying neurocognitive mechanism. Using an incubation paradigm, we temporarily disengaged participants from the initial creative ideation task and required them to conduct two different distraction activities (moderately-demanding: 1-back working memory task, non-demanding: 0-back choice reaction time task), then returned them to the previous creative task. On the process of creative ideation, we calculated the representational dissimilarities between the two creative ideation phases before and after incubation period to estimate the neural representational change underlying successful incubation. The results found that, for the 0-back condition, successful incubation was associated with the representational change in precuneus (PCU), whereas for the 1-back condition, it was associated with change in rostrolateral PFC (rlPFC), suggesting the dual processes of the DMN-mediated associative thinking and PFC-mediated controlled thinking for the 0- or the 1-back incubation conditions to prompt creation. On the incubation delay, we found the successful incubation in both conditions was accompanied with network integration between frontoparietal (FP) and default mode (DM) network, further suggesting the coupling of the controlled- and associative-thinking for the incubation to work. Moreover, we found the FP-DM integration during incubation period could respectively predict the representational change in PCU or rlPFC in the creative ideation phase of 0- or 1-back condition. This means both conditions benefits from the coordination of the controlled and of the associative thinking in incubation period, but for the representational change in creative ideation phase, 1-back condition relies more on the controlled thinking, whereas the 0-back on the associative ones. Additionally, we created a neural encoding indicator to assess the degree to which temporal activities in the rlPFC or PCU during incubation delay is related to the after-incubation successful problem-solving, and we found a positive relation between this indicator and dynamic reconfiguration of brain networks. This further indicates that FP-DM integration supports creative incubation through offline processing.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
期刊最新文献
Dynamic reconfiguration of default and frontoparietal network supports creative incubation. Zero-echo time imaging achieves whole brain activity mapping without ventral signal loss in mice. Beyond what was said: Neural computations underlying pragmatic reasoning in referential communication. Development and routine implementation of deep learning algorithm for automatic brain metastases segmentation on MRI for RANO-BM criteria follow-up. Development of the relationship between visual selective attention and auditory change detection.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1