Radiomics and dosiomics approaches to estimate lung function after stereotactic body radiation therapy in patients with lung tumors.

IF 1.7 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiological Physics and Technology Pub Date : 2025-01-14 DOI:10.1007/s12194-024-00877-9
Yoshiro Ieko, Noriyuki Kadoya, Shohei Tanaka, Koyo Kikuchi, Takaya Yamamoto, Hisanori Ariga, Keiichi Jingu
{"title":"Radiomics and dosiomics approaches to estimate lung function after stereotactic body radiation therapy in patients with lung tumors.","authors":"Yoshiro Ieko, Noriyuki Kadoya, Shohei Tanaka, Koyo Kikuchi, Takaya Yamamoto, Hisanori Ariga, Keiichi Jingu","doi":"10.1007/s12194-024-00877-9","DOIUrl":null,"url":null,"abstract":"<p><p>Lung function assessment is essential for determining the optimal treatment strategy for radiation therapy in patients with lung tumors. This study aimed to develop radiomics and dosiomics approaches to estimate pulmonary function test (PFT) results in post-stereotactic body radiation therapy (SBRT). Sixty-four patients with lung tumors who underwent SBRT were included. Models were created to estimate the PFT results at 0-6 months (Cohort 1) and 6-24 months (Cohort 2) after SBRT. Radiomics and dosiomics features were extracted from the computed tomography (CT) images and dose distributions, respectively. To estimate the PFT results, Models A (dose-volume histogram [DVH] + radiomics features) and B (DVH + radiomics + dosiomics features) were created. In the PFT results, the forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) were estimated using each model, and the ratio of FEV1 to FVC (FEV1/FVC) was calculated. The Pearson's correlation coefficient (Pearson r) and area under the curve (AUC) for FEV1/FVC (< 70%) were calculated. The models were evaluated by comparing them with the conventional calculation formulae (Conventional). The Pearson r (FEV1/FVC) values were 0.30, 0.64, and 0.69 for Conventional and Models A and B (Cohort 2), respectively, and the AUC (FEV1/FVC < 70%) values were 0.63, 0.80, and 0.78, respectively. This study demonstrates the possibility of estimating lung function after SBRT using radiomics and dosiomics features based on planning CT images and dose distributions.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00877-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Lung function assessment is essential for determining the optimal treatment strategy for radiation therapy in patients with lung tumors. This study aimed to develop radiomics and dosiomics approaches to estimate pulmonary function test (PFT) results in post-stereotactic body radiation therapy (SBRT). Sixty-four patients with lung tumors who underwent SBRT were included. Models were created to estimate the PFT results at 0-6 months (Cohort 1) and 6-24 months (Cohort 2) after SBRT. Radiomics and dosiomics features were extracted from the computed tomography (CT) images and dose distributions, respectively. To estimate the PFT results, Models A (dose-volume histogram [DVH] + radiomics features) and B (DVH + radiomics + dosiomics features) were created. In the PFT results, the forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) were estimated using each model, and the ratio of FEV1 to FVC (FEV1/FVC) was calculated. The Pearson's correlation coefficient (Pearson r) and area under the curve (AUC) for FEV1/FVC (< 70%) were calculated. The models were evaluated by comparing them with the conventional calculation formulae (Conventional). The Pearson r (FEV1/FVC) values were 0.30, 0.64, and 0.69 for Conventional and Models A and B (Cohort 2), respectively, and the AUC (FEV1/FVC < 70%) values were 0.63, 0.80, and 0.78, respectively. This study demonstrates the possibility of estimating lung function after SBRT using radiomics and dosiomics features based on planning CT images and dose distributions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Radiological Physics and Technology
Radiological Physics and Technology RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
12.50%
发文量
40
期刊介绍: The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.
期刊最新文献
Influence of obtaining medical records and laboratory data on the sensitivity of diagnostic imaging assessment by radiological technologists. Dosimetric impact of arc simulation angular resolution in single-isocentre multi-target stereotactic radiosurgery. Radiomics and dosiomics approaches to estimate lung function after stereotactic body radiation therapy in patients with lung tumors. Development of an image quality evaluation system for bedside chest X-ray images using scatter correction processing. Evaluation of gravity effect on liver and spleen volumes using multiposture MRI.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1