{"title":"Radiomics and dosiomics approaches to estimate lung function after stereotactic body radiation therapy in patients with lung tumors.","authors":"Yoshiro Ieko, Noriyuki Kadoya, Shohei Tanaka, Koyo Kikuchi, Takaya Yamamoto, Hisanori Ariga, Keiichi Jingu","doi":"10.1007/s12194-024-00877-9","DOIUrl":null,"url":null,"abstract":"<p><p>Lung function assessment is essential for determining the optimal treatment strategy for radiation therapy in patients with lung tumors. This study aimed to develop radiomics and dosiomics approaches to estimate pulmonary function test (PFT) results in post-stereotactic body radiation therapy (SBRT). Sixty-four patients with lung tumors who underwent SBRT were included. Models were created to estimate the PFT results at 0-6 months (Cohort 1) and 6-24 months (Cohort 2) after SBRT. Radiomics and dosiomics features were extracted from the computed tomography (CT) images and dose distributions, respectively. To estimate the PFT results, Models A (dose-volume histogram [DVH] + radiomics features) and B (DVH + radiomics + dosiomics features) were created. In the PFT results, the forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) were estimated using each model, and the ratio of FEV1 to FVC (FEV1/FVC) was calculated. The Pearson's correlation coefficient (Pearson r) and area under the curve (AUC) for FEV1/FVC (< 70%) were calculated. The models were evaluated by comparing them with the conventional calculation formulae (Conventional). The Pearson r (FEV1/FVC) values were 0.30, 0.64, and 0.69 for Conventional and Models A and B (Cohort 2), respectively, and the AUC (FEV1/FVC < 70%) values were 0.63, 0.80, and 0.78, respectively. This study demonstrates the possibility of estimating lung function after SBRT using radiomics and dosiomics features based on planning CT images and dose distributions.</p>","PeriodicalId":46252,"journal":{"name":"Radiological Physics and Technology","volume":" ","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiological Physics and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12194-024-00877-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Lung function assessment is essential for determining the optimal treatment strategy for radiation therapy in patients with lung tumors. This study aimed to develop radiomics and dosiomics approaches to estimate pulmonary function test (PFT) results in post-stereotactic body radiation therapy (SBRT). Sixty-four patients with lung tumors who underwent SBRT were included. Models were created to estimate the PFT results at 0-6 months (Cohort 1) and 6-24 months (Cohort 2) after SBRT. Radiomics and dosiomics features were extracted from the computed tomography (CT) images and dose distributions, respectively. To estimate the PFT results, Models A (dose-volume histogram [DVH] + radiomics features) and B (DVH + radiomics + dosiomics features) were created. In the PFT results, the forced expiratory volume in one second (FEV1) and forced vital capacity (FVC) were estimated using each model, and the ratio of FEV1 to FVC (FEV1/FVC) was calculated. The Pearson's correlation coefficient (Pearson r) and area under the curve (AUC) for FEV1/FVC (< 70%) were calculated. The models were evaluated by comparing them with the conventional calculation formulae (Conventional). The Pearson r (FEV1/FVC) values were 0.30, 0.64, and 0.69 for Conventional and Models A and B (Cohort 2), respectively, and the AUC (FEV1/FVC < 70%) values were 0.63, 0.80, and 0.78, respectively. This study demonstrates the possibility of estimating lung function after SBRT using radiomics and dosiomics features based on planning CT images and dose distributions.
期刊介绍:
The purpose of the journal Radiological Physics and Technology is to provide a forum for sharing new knowledge related to research and development in radiological science and technology, including medical physics and radiological technology in diagnostic radiology, nuclear medicine, and radiation therapy among many other radiological disciplines, as well as to contribute to progress and improvement in medical practice and patient health care.