Bacillus subtilis HGCC-1 improves growth performance and liver health via regulating gut microbiota in golden pompano.

IF 4.9 Q1 MICROBIOLOGY Animal microbiome Pub Date : 2025-01-13 DOI:10.1186/s42523-024-00372-x
Ming Li, Hui Liang, Jian Zhang, Jie Chen, Shichang Xu, Wenhao Zhou, Qianwen Ding, Yalin Yang, Zhen Zhang, Yuanyuan Yao, Chao Ran, Zhigang Zhou
{"title":"Bacillus subtilis HGCC-1 improves growth performance and liver health via regulating gut microbiota in golden pompano.","authors":"Ming Li, Hui Liang, Jian Zhang, Jie Chen, Shichang Xu, Wenhao Zhou, Qianwen Ding, Yalin Yang, Zhen Zhang, Yuanyuan Yao, Chao Ran, Zhigang Zhou","doi":"10.1186/s42523-024-00372-x","DOIUrl":null,"url":null,"abstract":"<p><p>Probiotics as green inputs have been reported to regulate metabolism and immunity of fish. However, the mechanisms by which probiotics improve growth and health of fish are unclear. Therefore, the aim of this study was to investigate the effect of Bacillus subtilis HGCC-1, an indigenous probiotic isolated from fish, on growth performance, host lipid metabolism, liver inflammation and gut microbiota of golden pompano. 160,000 golden pompanos with the initial body weight of 93.6 ± 5.0 g was randomly assigned to two dietary groups: Control and HGCC-1 (control diet supplemented with 0.3 g/kg Bacillus subtilis HGCC-1 fermentation product), and after three weeks of feeding, 26 golden pompanos were randomly collected from each group for gut microbiome and host phenotype analysis. Dietary supplementation with Bacillus subtilis HGCC-1 significantly promoted growth performance (P < 0.05) and enhanced feed utilization. Besides, HGCC-1 improved liver health and alleviated hepatic steatosis and inflammation. Furthermore, Bacillus subtilis HGCC-1 enhanced intestinal lipid absorption, promoted hepatic utilization of dietary fat by improving hepatic lipid uptake/transport and fatty acid β-oxidation to provide energy, and reduced hepatic TG level (P < 0.05), which may be the potential mechanism of Bacillus subtilis HGCC-1-mediated growth promotion. Finally, Bacillus subtilis HGCC-1 significantly altered the structure and function of gut microbiota (P < 0.05), leading to enrichment of beneficial taxa such as Bacillus (P < 0.0001) and increased of the ratio of \"Functional Group 2/Functional Group 1\" (P = 0.00092). Interestingly, the ratio of \"Functional Group 2/Functional Group 1\" was linked to the growth traits (Spearman, P < 0.05), while the intestinal abundance of Bacillus was correlated with serum TG in fish (Spearman, R = 0.47, P = 0.00091), suggesting a role of the intestinal microbiota in HGCC-1 mediated effect on growth and lipid metabolism. In summary, Bacillus subtilis HGCC-1 promotes growth performance, alleviate hepatic steatosis and enhances liver health via regulating gut microbiota in golden pompano, which ultimately showed as beneficial effect of fish growth and health.</p>","PeriodicalId":72201,"journal":{"name":"Animal microbiome","volume":"7 1","pages":"7"},"PeriodicalIF":4.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731533/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Animal microbiome","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42523-024-00372-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Probiotics as green inputs have been reported to regulate metabolism and immunity of fish. However, the mechanisms by which probiotics improve growth and health of fish are unclear. Therefore, the aim of this study was to investigate the effect of Bacillus subtilis HGCC-1, an indigenous probiotic isolated from fish, on growth performance, host lipid metabolism, liver inflammation and gut microbiota of golden pompano. 160,000 golden pompanos with the initial body weight of 93.6 ± 5.0 g was randomly assigned to two dietary groups: Control and HGCC-1 (control diet supplemented with 0.3 g/kg Bacillus subtilis HGCC-1 fermentation product), and after three weeks of feeding, 26 golden pompanos were randomly collected from each group for gut microbiome and host phenotype analysis. Dietary supplementation with Bacillus subtilis HGCC-1 significantly promoted growth performance (P < 0.05) and enhanced feed utilization. Besides, HGCC-1 improved liver health and alleviated hepatic steatosis and inflammation. Furthermore, Bacillus subtilis HGCC-1 enhanced intestinal lipid absorption, promoted hepatic utilization of dietary fat by improving hepatic lipid uptake/transport and fatty acid β-oxidation to provide energy, and reduced hepatic TG level (P < 0.05), which may be the potential mechanism of Bacillus subtilis HGCC-1-mediated growth promotion. Finally, Bacillus subtilis HGCC-1 significantly altered the structure and function of gut microbiota (P < 0.05), leading to enrichment of beneficial taxa such as Bacillus (P < 0.0001) and increased of the ratio of "Functional Group 2/Functional Group 1" (P = 0.00092). Interestingly, the ratio of "Functional Group 2/Functional Group 1" was linked to the growth traits (Spearman, P < 0.05), while the intestinal abundance of Bacillus was correlated with serum TG in fish (Spearman, R = 0.47, P = 0.00091), suggesting a role of the intestinal microbiota in HGCC-1 mediated effect on growth and lipid metabolism. In summary, Bacillus subtilis HGCC-1 promotes growth performance, alleviate hepatic steatosis and enhances liver health via regulating gut microbiota in golden pompano, which ultimately showed as beneficial effect of fish growth and health.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
枯草芽孢杆菌 HGCC-1 通过调节金鲳肠道微生物群提高生长性能和肝脏健康。
据报道,益生菌作为绿色输入物,可以调节鱼类的代谢和免疫。然而,益生菌促进鱼类生长和健康的机制尚不清楚。因此,本研究的目的是研究从鱼类中分离的原生益生菌枯草芽孢杆菌hgc -1对金鲳鱼生长性能、宿主脂质代谢、肝脏炎症和肠道微生物群的影响。试验选取初始体重为93.6±5.0 g的16万条金鲳鱼,随机分为对照组和HGCC-1组(对照组饲粮中添加0.3 g/kg枯草芽孢杆菌HGCC-1发酵物),饲喂3周后,每组随机取26条金鲳鱼进行肠道微生物组和宿主表型分析。饲粮中添加枯草芽孢杆菌hgc -1显著提高了生长性能(P
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
0.00%
发文量
0
审稿时长
13 weeks
期刊最新文献
Reduction of enteric methane emission using methanotroph-based probiotics in Hanwoo steers. Understanding the transfer and persistence of antimicrobial resistance in aquaculture using a model teleost gut system. Intrauterine growth restriction, defined by an elevated brain-to-liver weight ratio, affects faecal microbiota composition and, to a lesser extent, plasma metabolome profile at different ages in pigs. Nasal pathobiont abundance does not differ between dairy cattle with or without clinical symptoms of bovine respiratory disease. Contrasting recovery of metagenome‑assembled genomes and derived bacterial communities and functional profiles from lizard fecal and cloacal samples.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1