The emission of interpulses by a 6.45-h-period coherent radio transient

IF 12.9 1区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Nature Astronomy Pub Date : 2025-01-15 DOI:10.1038/s41550-024-02452-z
Y. W. J. Lee, M. Caleb, Tara Murphy, E. Lenc, D. L. Kaplan, L. Ferrario, Z. Wadiasingh, A. Anumarlapudi, N. Hurley-Walker, V. Karambelkar, S. K. Ocker, S. McSweeney, H. Qiu, K. M. Rajwade, A. Zic, K. W. Bannister, N. D. R. Bhat, A. Deller, D. Dobie, L. N. Driessen, K. Gendreau, M. Glowacki, V. Gupta, J. N. Jahns-Schindler, A. Jaini, C. W. James, M. M. Kasliwal, M. E. Lower, R. M. Shannon, P. A. Uttarkar, Y. Wang, Z. Wang
{"title":"The emission of interpulses by a 6.45-h-period coherent radio transient","authors":"Y. W. J. Lee, M. Caleb, Tara Murphy, E. Lenc, D. L. Kaplan, L. Ferrario, Z. Wadiasingh, A. Anumarlapudi, N. Hurley-Walker, V. Karambelkar, S. K. Ocker, S. McSweeney, H. Qiu, K. M. Rajwade, A. Zic, K. W. Bannister, N. D. R. Bhat, A. Deller, D. Dobie, L. N. Driessen, K. Gendreau, M. Glowacki, V. Gupta, J. N. Jahns-Schindler, A. Jaini, C. W. James, M. M. Kasliwal, M. E. Lower, R. M. Shannon, P. A. Uttarkar, Y. Wang, Z. Wang","doi":"10.1038/s41550-024-02452-z","DOIUrl":null,"url":null,"abstract":"<p>Long-period radio transients are a new class of astronomical objects characterized by prolonged periods ranging from 18 min to 54 min. They exhibit highly polarized, coherent, beamed radio emission lasting only 10–100 s. The intrinsic nature of these objects is subject to speculation, with highly magnetized white dwarfs and neutron stars being the prevailing candidates. Here we present ASKAP J183950.5−075635.0, boasting the longest known period of this class at 6.45 h. It exhibits emission characteristics of an ordered dipolar magnetic field, with pulsar-like bright main pulses and weaker interpulses offset by about half a period that are indicative of an oblique or orthogonal rotator. This phenomenon, observed in a long-period radio transient, confirms that the radio emission originates from both magnetic poles and that the observed period corresponds to the rotation period. The spectroscopic and polarimetric properties of ASKAP J183950.5−075635.0 are consistent with a neutron star origin, and this object is a crucial piece of evidence in our understanding of long-period radio sources and their links to neutron stars.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"1 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-024-02452-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Long-period radio transients are a new class of astronomical objects characterized by prolonged periods ranging from 18 min to 54 min. They exhibit highly polarized, coherent, beamed radio emission lasting only 10–100 s. The intrinsic nature of these objects is subject to speculation, with highly magnetized white dwarfs and neutron stars being the prevailing candidates. Here we present ASKAP J183950.5−075635.0, boasting the longest known period of this class at 6.45 h. It exhibits emission characteristics of an ordered dipolar magnetic field, with pulsar-like bright main pulses and weaker interpulses offset by about half a period that are indicative of an oblique or orthogonal rotator. This phenomenon, observed in a long-period radio transient, confirms that the radio emission originates from both magnetic poles and that the observed period corresponds to the rotation period. The spectroscopic and polarimetric properties of ASKAP J183950.5−075635.0 are consistent with a neutron star origin, and this object is a crucial piece of evidence in our understanding of long-period radio sources and their links to neutron stars.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Astronomy
Nature Astronomy Physics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍: Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas. Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence. In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.
期刊最新文献
Direct imaging of active galactic nucleus outflows and their origin with the 23 m Large Binocular Telescope The emission of interpulses by a 6.45-h-period coherent radio transient Surveys of the scientific community on the existence of extraterrestrial life Moon experienced more large impacts than we currently see on its surface Obliteration of ancient impact basins on the Moon by viscous relaxation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1