Privacy-Preserving Biometric Verification With Handwritten Random Digit String

Peirong Zhang;Yuliang Liu;Songxuan Lai;Hongliang Li;Lianwen Jin
{"title":"Privacy-Preserving Biometric Verification With Handwritten Random Digit String","authors":"Peirong Zhang;Yuliang Liu;Songxuan Lai;Hongliang Li;Lianwen Jin","doi":"10.1109/TPAMI.2025.3529022","DOIUrl":null,"url":null,"abstract":"Handwriting verification has stood as a steadfast identity authentication method for decades. However, this technique risks potential privacy breaches due to the inclusion of personal information in handwritten biometrics such as signatures. To address this concern, we propose using the Random Digit String (RDS) for privacy-preserving handwriting verification. This approach allows users to authenticate themselves by writing an arbitrary digit sequence, effectively ensuring privacy protection. To evaluate the effectiveness of RDS, we construct a new HRDS4BV dataset composed of online naturally handwritten RDS. Unlike conventional handwriting, RDS encompasses unconstrained and variable content, posing significant challenges for modeling consistent personal writing style. To surmount this, we propose the Pattern Attentive VErification Network (PAVENet), along with a Discriminative Pattern Mining (DPM) module. DPM adaptively enhances the recognition of consistent and discriminative writing patterns, thus refining handwriting style representation. Through comprehensive evaluations, we scrutinize the applicability of online RDS verification and showcase a pronounced outperformance of our model over existing methods. Furthermore, we discover a noteworthy forgery phenomenon that deviates from prior findings and discuss its positive impact in countering malicious impostor attacks. Substantially, our work underscores the feasibility of privacy-preserving biometric verification and propels the prospects of its broader acceptance and application.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"3049-3066"},"PeriodicalIF":18.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10840296/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Handwriting verification has stood as a steadfast identity authentication method for decades. However, this technique risks potential privacy breaches due to the inclusion of personal information in handwritten biometrics such as signatures. To address this concern, we propose using the Random Digit String (RDS) for privacy-preserving handwriting verification. This approach allows users to authenticate themselves by writing an arbitrary digit sequence, effectively ensuring privacy protection. To evaluate the effectiveness of RDS, we construct a new HRDS4BV dataset composed of online naturally handwritten RDS. Unlike conventional handwriting, RDS encompasses unconstrained and variable content, posing significant challenges for modeling consistent personal writing style. To surmount this, we propose the Pattern Attentive VErification Network (PAVENet), along with a Discriminative Pattern Mining (DPM) module. DPM adaptively enhances the recognition of consistent and discriminative writing patterns, thus refining handwriting style representation. Through comprehensive evaluations, we scrutinize the applicability of online RDS verification and showcase a pronounced outperformance of our model over existing methods. Furthermore, we discover a noteworthy forgery phenomenon that deviates from prior findings and discuss its positive impact in countering malicious impostor attacks. Substantially, our work underscores the feasibility of privacy-preserving biometric verification and propels the prospects of its broader acceptance and application.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
手写随机数字字符串保护隐私的生物特征验证
几十年来,笔迹验证一直是一种可靠的身份认证方法。然而,这种技术存在潜在的隐私泄露风险,因为手写的生物识别信息(如签名)中包含个人信息。为了解决这个问题,我们建议使用随机数字字符串(RDS)来保护隐私的手写验证。这种方法允许用户通过写入任意数字序列来验证自己,有效地确保了隐私保护。为了评估RDS的有效性,我们构建了一个由在线自然手写RDS组成的新的HRDS4BV数据集。与传统笔迹不同,RDS包含不受约束和可变的内容,这对建立一致的个人写作风格提出了重大挑战。为了克服这个问题,我们提出了模式关注验证网络(PAVENet),以及一个判别模式挖掘(DPM)模块。DPM自适应地增强了对一致性和判别性书写模式的识别,从而改进了手写风格的表示。通过综合评估,我们仔细审查了在线RDS验证的适用性,并展示了我们的模型优于现有方法的明显表现。此外,我们发现了一个值得注意的伪造现象,它偏离了先前的发现,并讨论了它在对抗恶意冒名顶替攻击方面的积极影响。从本质上讲,我们的工作强调了保护隐私的生物识别验证的可行性,并推动了其更广泛接受和应用的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Gaze Representation Learning by Switching Features. H2OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers. MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection. Parse Trees Guided LLM Prompt Compression. Fast Multi-View Discrete Clustering Via Spectral Embedding Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1