Clarify Confused Nodes via Separated Learning

Jiajun Zhou;Shengbo Gong;Xuanze Chen;Chenxuan Xie;Shanqing Yu;Qi Xuan;Xiaoniu Yang
{"title":"Clarify Confused Nodes via Separated Learning","authors":"Jiajun Zhou;Shengbo Gong;Xuanze Chen;Chenxuan Xie;Shanqing Yu;Qi Xuan;Xiaoniu Yang","doi":"10.1109/TPAMI.2025.3528738","DOIUrl":null,"url":null,"abstract":"Graph neural networks (GNNs) have achieved remarkable advances in graph-oriented tasks. However, real-world graphs invariably contain a certain proportion of heterophilous nodes, challenging the homophily assumption of traditional GNNs and hindering their performance. Most existing studies continue to design generic models with shared weights between heterophilous and homophilous nodes. Despite the incorporation of high-order messages or multi-channel architectures, these efforts often fall short. A minority of studies attempt to train different node groups separately but suffer from inappropriate separation metrics and low efficiency. In this paper, we first propose a new metric, termed Neighborhood Confusion (<italic>NC</i>), to facilitate a more reliable separation of nodes. We observe that node groups with different levels of <italic>NC</i> values exhibit certain differences in intra-group accuracy and visualized embeddings. These pave the way for <bold>N</b>eighborhood <bold>C</b>onfusion-guided <bold>G</b>raph <bold>C</b>onvolutional <bold>N</b>etwork (<bold>NCGCN</b>), in which nodes are grouped by their <italic>NC</i> values and accept intra-group weight sharing and message passing. Extensive experiments on both homophilous and heterophilous benchmarks demonstrate that our framework can effectively separate nodes and yield significant performance improvement compared to the latest methods.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2882-2896"},"PeriodicalIF":18.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10840207/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graph neural networks (GNNs) have achieved remarkable advances in graph-oriented tasks. However, real-world graphs invariably contain a certain proportion of heterophilous nodes, challenging the homophily assumption of traditional GNNs and hindering their performance. Most existing studies continue to design generic models with shared weights between heterophilous and homophilous nodes. Despite the incorporation of high-order messages or multi-channel architectures, these efforts often fall short. A minority of studies attempt to train different node groups separately but suffer from inappropriate separation metrics and low efficiency. In this paper, we first propose a new metric, termed Neighborhood Confusion (NC), to facilitate a more reliable separation of nodes. We observe that node groups with different levels of NC values exhibit certain differences in intra-group accuracy and visualized embeddings. These pave the way for Neighborhood Confusion-guided Graph Convolutional Network (NCGCN), in which nodes are grouped by their NC values and accept intra-group weight sharing and message passing. Extensive experiments on both homophilous and heterophilous benchmarks demonstrate that our framework can effectively separate nodes and yield significant performance improvement compared to the latest methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过分离学习澄清困惑的节点
图神经网络(gnn)在面向图的任务中取得了显著的进展。然而,现实世界的图总是包含一定比例的异亲节点,这挑战了传统gnn的同质假设,阻碍了它们的性能。大多数现有的研究继续设计在异亲和同亲节点之间共享权值的通用模型。尽管结合了高阶消息或多通道体系结构,但这些努力往往不足。少数研究试图分别训练不同的节点组,但分离度量不合适,效率低。在本文中,我们首先提出了一个新的度量,称为邻域混淆(NC),以促进更可靠的节点分离。我们观察到不同NC值水平的节点组在组内精度和可视化嵌入方面存在一定差异。这为邻域混淆引导图卷积网络(NCGCN)铺平了道路,在NCGCN中,节点根据其NC值分组,并接受组内权重共享和消息传递。在同质和异构基准测试上的大量实验表明,与最新方法相比,我们的框架可以有效地分离节点,并产生显着的性能改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Gaze Representation Learning by Switching Features. H2OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers. MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection. Parse Trees Guided LLM Prompt Compression. Fast Multi-View Discrete Clustering Via Spectral Embedding Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1