Few-Shot Class-Incremental Learning for Classification and Object Detection: A Survey

Jinghua Zhang;Li Liu;Olli Silvén;Matti Pietikäinen;Dewen Hu
{"title":"Few-Shot Class-Incremental Learning for Classification and Object Detection: A Survey","authors":"Jinghua Zhang;Li Liu;Olli Silvén;Matti Pietikäinen;Dewen Hu","doi":"10.1109/TPAMI.2025.3529038","DOIUrl":null,"url":null,"abstract":"Few-shot Class-Incremental Learning (FSCIL) presents a unique challenge in Machine Learning (ML), as it necessitates the Incremental Learning (IL) of new classes from sparsely labeled training samples without forgetting previous knowledge. While this field has seen recent progress, it remains an active exploration area. This paper aims to provide a comprehensive and systematic review of FSCIL. In our in-depth examination, we delve into various facets of FSCIL, encompassing the problem definition, the discussion of the primary challenges of unreliable empirical risk minimization and the stability-plasticity dilemma, general schemes, and relevant problems of IL and Few-shot Learning (FSL). Besides, we offer an overview of benchmark datasets and evaluation metrics. Furthermore, we introduce the Few-shot Class-incremental Classification (FSCIC) methods from data-based, structure-based, and optimization-based approaches and the Few-shot Class-incremental Object Detection (FSCIOD) methods from anchor-free and anchor-based approaches. Beyond these, we present several promising research directions within FSCIL that merit further investigation.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2924-2945"},"PeriodicalIF":18.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10840313/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Few-shot Class-Incremental Learning (FSCIL) presents a unique challenge in Machine Learning (ML), as it necessitates the Incremental Learning (IL) of new classes from sparsely labeled training samples without forgetting previous knowledge. While this field has seen recent progress, it remains an active exploration area. This paper aims to provide a comprehensive and systematic review of FSCIL. In our in-depth examination, we delve into various facets of FSCIL, encompassing the problem definition, the discussion of the primary challenges of unreliable empirical risk minimization and the stability-plasticity dilemma, general schemes, and relevant problems of IL and Few-shot Learning (FSL). Besides, we offer an overview of benchmark datasets and evaluation metrics. Furthermore, we introduce the Few-shot Class-incremental Classification (FSCIC) methods from data-based, structure-based, and optimization-based approaches and the Few-shot Class-incremental Object Detection (FSCIOD) methods from anchor-free and anchor-based approaches. Beyond these, we present several promising research directions within FSCIL that merit further investigation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于分类和物体检测的少镜头分类增量学习:调查
少量类增量学习(FSCIL)在机器学习(ML)中提出了一个独特的挑战,因为它需要在不忘记先前知识的情况下,从稀疏标记的训练样本中对新类进行增量学习(IL)。虽然该领域最近取得了进展,但它仍然是一个活跃的勘探领域。本文旨在对FSCIL进行全面系统的综述。在我们的深入研究中,我们深入研究了FSCIL的各个方面,包括问题定义、不可靠经验风险最小化和稳定性-可塑性困境的主要挑战的讨论、一般方案以及IL和Few-shot Learning (FSL)的相关问题。此外,我们还提供了基准数据集和评估指标的概述。此外,我们还介绍了基于数据、基于结构和基于优化的少弹类增量分类(FSCIC)方法,以及基于锚点和无锚点的少弹类增量目标检测(FSCIOD)方法。除此之外,我们还提出了FSCIL中值得进一步研究的几个有前途的研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised Gaze Representation Learning by Switching Features. H2OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers. MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection. Parse Trees Guided LLM Prompt Compression. Fast Multi-View Discrete Clustering Via Spectral Embedding Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1