Learning the Optimal Discriminant SVM With Feature Extraction

Junhong Zhang;Zhihui Lai;Heng Kong;Jian Yang
{"title":"Learning the Optimal Discriminant SVM With Feature Extraction","authors":"Junhong Zhang;Zhihui Lai;Heng Kong;Jian Yang","doi":"10.1109/TPAMI.2025.3529711","DOIUrl":null,"url":null,"abstract":"Subspace learning and Support Vector Machine (SVM) are two critical techniques in pattern recognition, playing pivotal roles in feature extraction and classification. However, how to learn the optimal subspace such that the SVM classifier can perform the best is still a challenging problem due to the difficulty in optimization, computation, and algorithm convergence. To address these problems, this paper develops a novel method named Optimal Discriminant Support Vector Machine (ODSVM), which integrates support vector classification with discriminative subspace learning in a seamless framework. As a result, the most discriminative subspace and the corresponding optimal SVM are obtained simultaneously to pursue the best classification performance. The efficient optimization framework is designed for binary and multi-class ODSVM. Moreover, a fast sequential minimization optimization (SMO) algorithm with pruning is proposed to accelerate the computation in multi-class ODSVM. Unlike other related methods, ODSVM has a strong theoretical guarantee of global convergence, highlighting its superiority and stability. Numerical experiments are conducted on thirteen datasets and the results demonstrate that ODSVM outperforms existing methods with statistical significance.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"47 4","pages":"2897-2911"},"PeriodicalIF":18.6000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10840348/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Subspace learning and Support Vector Machine (SVM) are two critical techniques in pattern recognition, playing pivotal roles in feature extraction and classification. However, how to learn the optimal subspace such that the SVM classifier can perform the best is still a challenging problem due to the difficulty in optimization, computation, and algorithm convergence. To address these problems, this paper develops a novel method named Optimal Discriminant Support Vector Machine (ODSVM), which integrates support vector classification with discriminative subspace learning in a seamless framework. As a result, the most discriminative subspace and the corresponding optimal SVM are obtained simultaneously to pursue the best classification performance. The efficient optimization framework is designed for binary and multi-class ODSVM. Moreover, a fast sequential minimization optimization (SMO) algorithm with pruning is proposed to accelerate the computation in multi-class ODSVM. Unlike other related methods, ODSVM has a strong theoretical guarantee of global convergence, highlighting its superiority and stability. Numerical experiments are conducted on thirteen datasets and the results demonstrate that ODSVM outperforms existing methods with statistical significance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征提取的最优判别支持向量机学习
子空间学习和支持向量机(SVM)是模式识别中的两种关键技术,在特征提取和分类中起着至关重要的作用。然而,如何学习最优子空间,使SVM分类器发挥最佳性能,由于优化、计算和算法收敛的困难,仍然是一个具有挑战性的问题。为了解决这些问题,本文提出了一种新的方法——最优判别支持向量机(ODSVM),该方法将支持向量分类与判别子空间学习无缝结合。从而同时获得最具判别性的子空间和相应的最优支持向量机,以追求最佳分类性能。针对二元和多类ODSVM设计了高效的优化框架。此外,为了提高多类ODSVM的计算速度,提出了一种带剪枝的快速序列最小化优化算法。与其他相关方法不同,ODSVM具有较强的全局收敛性理论保证,突出了其优越性和稳定性。在13个数据集上进行了数值实验,结果表明ODSVM优于现有方法,具有统计学显著性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GrowSP++: Growing Superpoints and Primitives for Unsupervised 3D Semantic Segmentation. Unsupervised Gaze Representation Learning by Switching Features. H2OT: Hierarchical Hourglass Tokenizer for Efficient Video Pose Transformers. MV2DFusion: Leveraging Modality-Specific Object Semantics for Multi-Modal 3D Detection. Parse Trees Guided LLM Prompt Compression.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1