{"title":"Interfacial Water Orientation in Neutral Oxygen Catalysis for Reversible Ampere-scale Zinc-air Batteries","authors":"yixin hao, Luqi Wang, Hongjiao Huang, Hao Zhou, Gengyu Xing, Dongxiao Ji, Tianran Zhang, Aoming Huang, Ai-Yin Wang, Xiang-Rong Chen, Tsung-Yi Chen, Han-Yi Chen, Seeram Ramakrishna, Shengjie Peng","doi":"10.1002/anie.202421640","DOIUrl":null,"url":null,"abstract":"The neutral oxygen catalysis is an electrochemical reaction of the utmost importance in energy generation, storage application, and chemical synthesis. However, the restricted availability of protons poses a challenge to achieving kinetically favorable oxygen catalytic reactions. Here, we alter the interfacial water orientation by adjusting the Brønsted acidity at the catalyst surface, to break the proton transfer limitation of neutral oxygen electrocatalysis. An unexpected role of water molecules in improving the activity of neutral oxygen catalysis is revealed, namely, increasing the H-down configuration water in electric double layers rather than merely affecting the energy barriers for reaction limiting steps. The proposed porous nanofibers with atomically dispersed MnN3 exhibit record-breaking activity (EORR@1/2/EOER@10 mA = 0.85/1.65 V vs. RHE) and reversibility (2500 h), outperforming all previously reported neutral catalysts and rivaling conventional alkaline systems. In particular, practical ampere-scale zinc-air batteries (ZABs) stack are constructed with a capacity of 5.93 Ah and can stably operate under 1.0 A and 1.0 Ah conditions, demonstrating broad application prospects. This work provides a novel and feasible perspective for designing neutral oxygen electrocatalysts and reveals the future commercial potential in mobile power supply and large-scale energy storage.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"36 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202421640","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The neutral oxygen catalysis is an electrochemical reaction of the utmost importance in energy generation, storage application, and chemical synthesis. However, the restricted availability of protons poses a challenge to achieving kinetically favorable oxygen catalytic reactions. Here, we alter the interfacial water orientation by adjusting the Brønsted acidity at the catalyst surface, to break the proton transfer limitation of neutral oxygen electrocatalysis. An unexpected role of water molecules in improving the activity of neutral oxygen catalysis is revealed, namely, increasing the H-down configuration water in electric double layers rather than merely affecting the energy barriers for reaction limiting steps. The proposed porous nanofibers with atomically dispersed MnN3 exhibit record-breaking activity (EORR@1/2/EOER@10 mA = 0.85/1.65 V vs. RHE) and reversibility (2500 h), outperforming all previously reported neutral catalysts and rivaling conventional alkaline systems. In particular, practical ampere-scale zinc-air batteries (ZABs) stack are constructed with a capacity of 5.93 Ah and can stably operate under 1.0 A and 1.0 Ah conditions, demonstrating broad application prospects. This work provides a novel and feasible perspective for designing neutral oxygen electrocatalysts and reveals the future commercial potential in mobile power supply and large-scale energy storage.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.