Observation of a rare beta decay of the charmed baryon with a Graph Neural Network

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-15 DOI:10.1038/s41467-024-55042-y
{"title":"Observation of a rare beta decay of the charmed baryon with a Graph Neural Network","authors":"","doi":"10.1038/s41467-024-55042-y","DOIUrl":null,"url":null,"abstract":"<p>The beta decay of the lightest charmed baryon <span>\\({\\Lambda }_{c}^{+}\\)</span> provides unique insights into the fundamental mechanism of strong and electro-weak interactions, serving as a testbed for investigating non-perturbative quantum chromodynamics and constraining the Cabibbo-Kobayashi-Maskawa (CKM) matrix parameters. This article presents the first observation of the Cabibbo-suppressed decay <span>\\({\\Lambda }_{c}^{+}\\to n{e}^{+}{\\nu }_{e}\\)</span>, utilizing 4.5 fb<sup>−1</sup> of electron-positron annihilation data collected with the BESIII detector. A novel Graph Neural Network based technique effectively separates signals from dominant backgrounds, notably <span>\\({\\Lambda }_{c}^{+}\\to \\Lambda {e}^{+}{\\nu }_{e}\\)</span>, achieving a statistical significance exceeding 10<i>σ</i>. The absolute branching fraction is measured to be (3.57 ± 0.34<sub>stat.</sub> ± 0.14<sub>syst.</sub>) × 10<sup>−3</sup>. For the first time, the CKM matrix element <span>\\(\\left\\vert {V}_{cd}\\right\\vert\\)</span> is extracted via a charmed baryon decay as <span>\\(0.208\\pm 0.01{1}_{{{{\\rm{exp.}}}}}\\pm 0.00{7}_{{{{\\rm{LQCD}}}}}\\pm 0.00{1}_{{\\tau }_{{\\Lambda }_{c}^{+}}}\\)</span>. This work highlights a new approach to further understand fundamental interactions in the charmed baryon sector, and showcases the power of modern machine learning techniques in experimental high-energy physics.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"118 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-55042-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The beta decay of the lightest charmed baryon \({\Lambda }_{c}^{+}\) provides unique insights into the fundamental mechanism of strong and electro-weak interactions, serving as a testbed for investigating non-perturbative quantum chromodynamics and constraining the Cabibbo-Kobayashi-Maskawa (CKM) matrix parameters. This article presents the first observation of the Cabibbo-suppressed decay \({\Lambda }_{c}^{+}\to n{e}^{+}{\nu }_{e}\), utilizing 4.5 fb−1 of electron-positron annihilation data collected with the BESIII detector. A novel Graph Neural Network based technique effectively separates signals from dominant backgrounds, notably \({\Lambda }_{c}^{+}\to \Lambda {e}^{+}{\nu }_{e}\), achieving a statistical significance exceeding 10σ. The absolute branching fraction is measured to be (3.57 ± 0.34stat. ± 0.14syst.) × 10−3. For the first time, the CKM matrix element \(\left\vert {V}_{cd}\right\vert\) is extracted via a charmed baryon decay as \(0.208\pm 0.01{1}_{{{{\rm{exp.}}}}}\pm 0.00{7}_{{{{\rm{LQCD}}}}}\pm 0.00{1}_{{\tau }_{{\Lambda }_{c}^{+}}}\). This work highlights a new approach to further understand fundamental interactions in the charmed baryon sector, and showcases the power of modern machine learning techniques in experimental high-energy physics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用图神经网络观察罕见的粲重子衰变
最轻的粲重子\({\Lambda }_{c}^{+}\)的β衰变提供了对强弱相互作用基本机制的独特见解,作为研究非微扰量子色动力学和限制Cabibbo-Kobayashi-Maskawa (CKM)矩阵参数的测试平台。本文利用BESIII探测器收集的4.5 fb−1的电子-正电子湮灭数据,首次观测到cabibbo抑制衰变\({\Lambda }_{c}^{+}\to n{e}^{+}{\nu }_{e}\)。一种新的基于图神经网络的技术有效地将信号从主导背景中分离出来,特别是\({\Lambda }_{c}^{+}\to \Lambda {e}^{+}{\nu }_{e}\),实现了超过10σ的统计显著性。绝对分支分数测量为(3.57±0.34stat)。±0.14系统)× 10−3。首次将CKM矩阵元素\(\left\vert {V}_{cd}\right\vert\)通过粲重子衰变提取为\(0.208\pm 0.01{1}_{{{{\rm{exp.}}}}}\pm 0.00{7}_{{{{\rm{LQCD}}}}}\pm 0.00{1}_{{\tau }_{{\Lambda }_{c}^{+}}}\)。这项工作强调了进一步理解迷人重子扇区基本相互作用的新方法,并展示了现代机器学习技术在实验高能物理中的力量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Diffractive magic cube network with super-high capacity enabled by mechanical reconfiguration The transcription factor HHEX maintains glucocorticoid levels and protects adrenals from androgen-induced lipid depletion Alleviating non-radiative losses in organic solar cells through side-chain regulation of low-bandgap non-fullerene acceptors. Regular-wrinkling tunable MXene lattice for electromagnetic interference shielding Integration of large vision language models for efficient post-disaster damage assessment and reporting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1