Dipole-induced transitions from Schottky to Ohmic contact at Janus MoSiGeN4/metal interfaces.

IF 8 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Nanoscale Horizons Pub Date : 2025-01-15 DOI:10.1039/d4nh00493k
Wen Ai, Xiaohui Hu, Tao Xu, Jian Yang, Litao Sun
{"title":"Dipole-induced transitions from Schottky to Ohmic contact at Janus MoSiGeN<sub>4</sub>/metal interfaces.","authors":"Wen Ai, Xiaohui Hu, Tao Xu, Jian Yang, Litao Sun","doi":"10.1039/d4nh00493k","DOIUrl":null,"url":null,"abstract":"<p><p>Janus MoSiGeN<sub>4</sub> monolayers exhibit exceptional mechanical stability and high electron mobility, which make them a promising channel candidate for field-effect transistors (FETs). However, the high Schottky barrier at the contact interface would limit the carrier injection efficiency and degrade device performance. Herein, using density functional theory calculations and machine learning methods, we investigated the interfacial properties of the Janus MoSiGeN<sub>4</sub> monolayer and metal electrode contacts. The results demonstrated that the n-type/p-type Schottky and n-type Ohmic contacts can be realized in metal/MoSiGeN<sub>4</sub> by changing the built-in electric dipole orientation of MoSiGeN<sub>4</sub>. Specifically, the contact type of Cu/MoSiGeN<sub>4</sub> (Au/MoSiGeN<sub>4</sub>) transfers from an n-type Schottky (p-type Schottky) contact to an n-type Ohmic (n-type Schottky) contact when the contact side of MoSiGeN<sub>4</sub> switches from Si-N to Ge-N. In addition, the Fermi level pinning (FLP) effect of metal/MoSiGeN<sub>4</sub> with the Si-N side is weaker than that of metal/MoSiGeN<sub>4</sub> with the Ge-N side due to the effect of intrinsic dipole and interface dipole. Notably, a simplified mathematical expression Δ<i>V</i>/<i>W</i><sub>M</sub> is developed to describe the Schottky barrier height at metal/MoSiGeN<sub>4</sub> interfaces using the machine learning method. These findings offer valuable guidance for the design and development of high-performance Janus MoSiGeN<sub>4</sub>-based electronic devices.</p>","PeriodicalId":93,"journal":{"name":"Nanoscale Horizons","volume":" ","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nh00493k","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Janus MoSiGeN4 monolayers exhibit exceptional mechanical stability and high electron mobility, which make them a promising channel candidate for field-effect transistors (FETs). However, the high Schottky barrier at the contact interface would limit the carrier injection efficiency and degrade device performance. Herein, using density functional theory calculations and machine learning methods, we investigated the interfacial properties of the Janus MoSiGeN4 monolayer and metal electrode contacts. The results demonstrated that the n-type/p-type Schottky and n-type Ohmic contacts can be realized in metal/MoSiGeN4 by changing the built-in electric dipole orientation of MoSiGeN4. Specifically, the contact type of Cu/MoSiGeN4 (Au/MoSiGeN4) transfers from an n-type Schottky (p-type Schottky) contact to an n-type Ohmic (n-type Schottky) contact when the contact side of MoSiGeN4 switches from Si-N to Ge-N. In addition, the Fermi level pinning (FLP) effect of metal/MoSiGeN4 with the Si-N side is weaker than that of metal/MoSiGeN4 with the Ge-N side due to the effect of intrinsic dipole and interface dipole. Notably, a simplified mathematical expression ΔV/WM is developed to describe the Schottky barrier height at metal/MoSiGeN4 interfaces using the machine learning method. These findings offer valuable guidance for the design and development of high-performance Janus MoSiGeN4-based electronic devices.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
偶极子诱导Janus MoSiGeN4/金属界面从肖特基接触到欧姆接触的转变。
Janus MoSiGeN4单层具有优异的机械稳定性和高电子迁移率,这使其成为场效应晶体管(fet)的有前途的沟道候选者。然而,接触界面处的高肖特基势垒会限制载流子注入效率并降低器件性能。本文采用密度泛函理论计算和机器学习方法,研究了Janus MoSiGeN4单层与金属电极接触的界面特性。结果表明,通过改变MoSiGeN4的内置电偶极子取向,可以在金属/MoSiGeN4中实现n型/p型肖特基和n型欧姆触点。具体来说,当MoSiGeN4的接触侧从Si-N切换到Ge-N时,Cu/MoSiGeN4 (Au/MoSiGeN4)的接触类型从n型肖特基(p型肖特基)接触转移到n型欧姆(n型肖特基)接触。此外,由于本质偶极子和界面偶极子的影响,Si-N侧的金属/MoSiGeN4的费米能级钉钉效应(FLP)弱于Ge-N侧的金属/MoSiGeN4。值得注意的是,利用机器学习方法,开发了一个简化的数学表达式ΔV/WM来描述金属/MoSiGeN4界面上的肖特基势垒高度。这些发现为基于Janus mosigen4的高性能电子器件的设计和开发提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Horizons
Nanoscale Horizons Materials Science-General Materials Science
CiteScore
16.30
自引率
1.00%
发文量
141
期刊介绍: Nanoscale Horizons stands out as a premier journal for publishing exceptionally high-quality and innovative nanoscience and nanotechnology. The emphasis lies on original research that introduces a new concept or a novel perspective (a conceptual advance), prioritizing this over reporting technological improvements. Nevertheless, outstanding articles showcasing truly groundbreaking developments, including record-breaking performance, may also find a place in the journal. Published work must be of substantial general interest to our broad and diverse readership across the nanoscience and nanotechnology community.
期刊最新文献
High-refractive-index 2D photonic structures for robust low-threshold multiband lasing. Prediction methods for phonon transport properties of inorganic crystals: from traditional approaches to artificial intelligence. Nanoscale Horizons Emerging Investigator Series: Dr Mohammad Malakooti, University of Washington, USA. Edge-doped substituents as an emerging atomic-level strategy for enhancing M-N4-C single-atom catalysts in electrocatalysis of the ORR, OER, and HER. Emerging 2D materials hardware for in-sensor computing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1