Precision Medicine for High-Risk Gene Fusions in Pediatric AML: a focus on KMT2A, NUP98, and GLIS2 Rearrangements.

IF 21 1区 医学 Q1 HEMATOLOGY Blood Pub Date : 2025-01-14 DOI:10.1182/blood.2024026598
Grace Egan, Sarah K Tasian
{"title":"Precision Medicine for High-Risk Gene Fusions in Pediatric AML: a focus on KMT2A, NUP98, and GLIS2 Rearrangements.","authors":"Grace Egan, Sarah K Tasian","doi":"10.1182/blood.2024026598","DOIUrl":null,"url":null,"abstract":"<p><p>Robust genetic characterization of paediatric AML has demonstrated that fusion oncogenes are highly prevalent drivers of AML leukemogenesis in young children. Identification of fusion oncogenes associated with adverse outcomes has facilitated risk stratification of patients, although successful development of precision medicine approaches for most fusion-driven AML subtypes have been historically challenging. This knowledge gap has been in part due to difficulties in targeting structural alterations involving transcription factors and in identification of a therapeutic window for selective inhibition of the oncofusion without deleterious effects upon essential wild-type proteins. Herein, we discuss the current molecular landscape and functional characterisation of three of the most lethal childhood AML fusion-oncogene driven subtypes harbouring KMT2A, NUP98, or CBFA2T3::GLIS2 rearrangements. We further review early-phase clinical trial data of novel targeted inhibitors and immunotherapies that have demonstrated initial success specifically for children with these poor-prognosis genetic subtypes of AML and provide appreciable optimism to improve clinical outcomes in the future.</p>","PeriodicalId":9102,"journal":{"name":"Blood","volume":" ","pages":""},"PeriodicalIF":21.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Blood","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1182/blood.2024026598","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Robust genetic characterization of paediatric AML has demonstrated that fusion oncogenes are highly prevalent drivers of AML leukemogenesis in young children. Identification of fusion oncogenes associated with adverse outcomes has facilitated risk stratification of patients, although successful development of precision medicine approaches for most fusion-driven AML subtypes have been historically challenging. This knowledge gap has been in part due to difficulties in targeting structural alterations involving transcription factors and in identification of a therapeutic window for selective inhibition of the oncofusion without deleterious effects upon essential wild-type proteins. Herein, we discuss the current molecular landscape and functional characterisation of three of the most lethal childhood AML fusion-oncogene driven subtypes harbouring KMT2A, NUP98, or CBFA2T3::GLIS2 rearrangements. We further review early-phase clinical trial data of novel targeted inhibitors and immunotherapies that have demonstrated initial success specifically for children with these poor-prognosis genetic subtypes of AML and provide appreciable optimism to improve clinical outcomes in the future.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Blood
Blood 医学-血液学
CiteScore
23.60
自引率
3.90%
发文量
955
审稿时长
1 months
期刊介绍: Blood, the official journal of the American Society of Hematology, published online and in print, provides an international forum for the publication of original articles describing basic laboratory, translational, and clinical investigations in hematology. Primary research articles will be published under the following scientific categories: Clinical Trials and Observations; Gene Therapy; Hematopoiesis and Stem Cells; Immunobiology and Immunotherapy scope; Myeloid Neoplasia; Lymphoid Neoplasia; Phagocytes, Granulocytes and Myelopoiesis; Platelets and Thrombopoiesis; Red Cells, Iron and Erythropoiesis; Thrombosis and Hemostasis; Transfusion Medicine; Transplantation; and Vascular Biology. Papers can be listed under more than one category as appropriate.
期刊最新文献
CpG island methylator phenotype classification improves risk assessment in pediatric T-cell Acute Lymphoblastic Leukemia. Dual Biological Role and Clinical Impact of De Novo Chromatin Activation in Chronic Lymphocytic Leukemia. Evaluating the impact of CRBN mutations on response to immunomodulatory drugs and novel CRBN-binding agents in myeloma. GATA2 links stemness to chemotherapy resistance in acute myeloid leukemia. Functional assessment of genetic variants in thrombomodulin detected in patients with bleeding and thrombosis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1