Indication of the sensitivity of Pinaceae species growing in Eastern Central Europe to ground-level ozone pollution.

IF 5.8 3区 环境科学与生态学 0 ENVIRONMENTAL SCIENCES Environmental Science and Pollution Research Pub Date : 2025-01-14 DOI:10.1007/s11356-025-35905-7
Veronika Lukasová, Svetlana Varšová, Lucia Žatková, Katarína Adamčíková, Anna Buchholcerová, Milan Onderka, Rastislav Milovský, Dušan Bilčík, Veronika Mináriková
{"title":"Indication of the sensitivity of Pinaceae species growing in Eastern Central Europe to ground-level ozone pollution.","authors":"Veronika Lukasová, Svetlana Varšová, Lucia Žatková, Katarína Adamčíková, Anna Buchholcerová, Milan Onderka, Rastislav Milovský, Dušan Bilčík, Veronika Mináriková","doi":"10.1007/s11356-025-35905-7","DOIUrl":null,"url":null,"abstract":"<p><p>This study focused on testing the response of the assimilation apparatus of evergreen Pinaceae species to increasing levels of oxidative stress simulated in manipulative experiments. Needles were collected from mature individuals of Pinus mugo, Pinus cembra, Pinus sylvestris, Abies alba, and Picea abies at the foothill (FH) and alpine treeline ecotone (ATE) in the High Tatras (Western Carpathians). The injury index (INX), quantified by the modified electrolyte leakage (EL) method, indicated severe needle damage due to exposure to extremely high levels of O<sub>3</sub>. Ozonation induced changes in the chemical composition of the needles, which were detected via gas chromatography-mass spectrometry. The oxidative stability (OxS) indicator derived from INXs was used to determine the stomatal O<sub>3</sub> flux-based critical level CL(OxS), with the threshold value of OxS at -0.05, corresponding to 5% injury to the needles. Assessment of the phytotoxic ozone dose (POD0) under ambient O<sub>3</sub> and field environmental conditions during the 2023 growing season via CL(OxS) revealed that the studied species utilised between 18% (Abies alba FH) and 33% (Pinus mugo ATE) of their O<sub>3</sub> tolerance potential. These results support our hypothesis that Pinaceae species growing in the High Tatras, which are part of the Alpine biogeographical region of Eastern Central Europe, are vulnerable to O<sub>3</sub> concentrations significantly higher than the typical ambient O<sub>3</sub> level in the natural environment.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-025-35905-7","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study focused on testing the response of the assimilation apparatus of evergreen Pinaceae species to increasing levels of oxidative stress simulated in manipulative experiments. Needles were collected from mature individuals of Pinus mugo, Pinus cembra, Pinus sylvestris, Abies alba, and Picea abies at the foothill (FH) and alpine treeline ecotone (ATE) in the High Tatras (Western Carpathians). The injury index (INX), quantified by the modified electrolyte leakage (EL) method, indicated severe needle damage due to exposure to extremely high levels of O3. Ozonation induced changes in the chemical composition of the needles, which were detected via gas chromatography-mass spectrometry. The oxidative stability (OxS) indicator derived from INXs was used to determine the stomatal O3 flux-based critical level CL(OxS), with the threshold value of OxS at -0.05, corresponding to 5% injury to the needles. Assessment of the phytotoxic ozone dose (POD0) under ambient O3 and field environmental conditions during the 2023 growing season via CL(OxS) revealed that the studied species utilised between 18% (Abies alba FH) and 33% (Pinus mugo ATE) of their O3 tolerance potential. These results support our hypothesis that Pinaceae species growing in the High Tatras, which are part of the Alpine biogeographical region of Eastern Central Europe, are vulnerable to O3 concentrations significantly higher than the typical ambient O3 level in the natural environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.70
自引率
17.20%
发文量
6549
审稿时长
3.8 months
期刊介绍: Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes: - Terrestrial Biology and Ecology - Aquatic Biology and Ecology - Atmospheric Chemistry - Environmental Microbiology/Biobased Energy Sources - Phytoremediation and Ecosystem Restoration - Environmental Analyses and Monitoring - Assessment of Risks and Interactions of Pollutants in the Environment - Conservation Biology and Sustainable Agriculture - Impact of Chemicals/Pollutants on Human and Animal Health It reports from a broad interdisciplinary outlook.
期刊最新文献
Cost-effective production of kombucha bacterial cellulose by evaluating nutrient sources, quality assessment, and dyeing methods. Environmental impact of disposable face masks: degradation, wear, and cement mortar incorporation. Geochemical signatures and contamination levels of rare earth elements in soil profiles controlled by parent rock and soil properties. Barriers to transition to resource-oriented sanitation in rural Ethiopia. Comprehensive screening and analysis of pharmaceuticals and pharmaceutically active chemicals in wastewater: health and environmental hazards and removal efficiency of wastewater treatment plant in Malaysia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1