Vladislav A Voloshkin, Leandros P Zorba, Steven P Nolan
{"title":"The influential IPr: 25 years after its discovery.","authors":"Vladislav A Voloshkin, Leandros P Zorba, Steven P Nolan","doi":"10.1039/d4sc07009g","DOIUrl":null,"url":null,"abstract":"<p><p>N-Heterocyclic carbenes (NHCs) have emerged as a privileged ligand family in organometallic chemistry, widely recognized for their unique steric and electronic properties. Among them, the 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene (IPr) ligand has become a cornerstone of NHC chemistry for its remarkable versatility, stability, and broad use. Since its discovery by the Nolan group in 1999, IPr has played a pivotal role in advancing catalytic transformations and facilitating the utilization of NHC ligands in various domains. This article highlights major contributions where IPr has helped shape modern organometallic chemistry, with a focus on its influence in transition metal catalysis and ligand design. Twenty five years after its discovery, the IPr ligand continues to be a benchmark ligand, inspiring and driving innovation.</p>","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":" ","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726322/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4sc07009g","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
N-Heterocyclic carbenes (NHCs) have emerged as a privileged ligand family in organometallic chemistry, widely recognized for their unique steric and electronic properties. Among them, the 1,3-bis(2,6-diisopropylphenyl)imidazole-2-ylidene (IPr) ligand has become a cornerstone of NHC chemistry for its remarkable versatility, stability, and broad use. Since its discovery by the Nolan group in 1999, IPr has played a pivotal role in advancing catalytic transformations and facilitating the utilization of NHC ligands in various domains. This article highlights major contributions where IPr has helped shape modern organometallic chemistry, with a focus on its influence in transition metal catalysis and ligand design. Twenty five years after its discovery, the IPr ligand continues to be a benchmark ligand, inspiring and driving innovation.
期刊介绍:
Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.