The complete mitochondrial genome of Gyrodactylus pseudorasborae (Platyhelminthes: Monogenea) with a phylogeny of Gyrodactylidae parasites.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY BMC Genomics Pub Date : 2025-01-14 DOI:10.1186/s12864-025-11225-5
Xinyi Zeng, Ye Li, Yang Liu, Yaoying Chen, Yajing Liu, Mengwei Song, Tao Chen
{"title":"The complete mitochondrial genome of Gyrodactylus pseudorasborae (Platyhelminthes: Monogenea) with a phylogeny of Gyrodactylidae parasites.","authors":"Xinyi Zeng, Ye Li, Yang Liu, Yaoying Chen, Yajing Liu, Mengwei Song, Tao Chen","doi":"10.1186/s12864-025-11225-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Gyrodactylus von Nordmann, 1832, a genus of viviparous parasites within the family Gyrodactylidae, contains one of the largest nominal species in the world. Gyrodactylus pseudorasborae Ondračková, Seifertová & Tkachenko, 2023 widely distributed in Europe and China, although its mitochondrial genome remains unclear. This study aims to sequence the mitogenome of G.pseudorasborae and clarify its phylogenetic relationship within the Gyrodactylidea. The mitochondrial genome of G. pseudorasborae was amplified in six parts from a single parasite, sequenced using primer walking, annotated and analyzed using bioinformatic tools.</p><p><strong>Results: </strong>The mitochondrial genome of G. pseudorasborae is 14,189 bp in length, containing 12 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and two major non-coding regions (NCR: NC1 and NC2). The overall A + T content of the mitogenome is 73.1%, a medium content compared with all reported mitochondrial genomes of monogeneans. The mitogenome of G. pseudorasborae presents a clear bias in nucleotide composition with a negative AT skew and a positive GC skew except for NCR. All tRNAs have the typical cloverleaf secondary structure except for tRNA<sup>Cys</sup>, tRNA<sup>Ser1</sup>, and tRNA<sup>Ser2</sup>, which lack the dihydrouridine (DHU) arm. Furthermore, one repetitive non-coding region of 32 bp repeats occurred in the NC1 region with poly-T stretch, stem-loop structure, and TAn motif. The gene order is identical to the mitochondrial genomes reported from other Gyrodactylus species except Gyrodactylus nyanzae Paperna, 1973 and Gyrodactylus sp. FZ-2021. Phylogenetic analyses show that G. pseudorasborae and Gyrodactylus parvae You, Easy & Cone, 2008 cluster together with high nodal support based on 12 PCGs sequences and amino acid sequences, Gyrodactylidae forms independent monophyletic clade within Gyrodactylidea.</p><p><strong>Conclusion: </strong>Both the mitochondrial genome and phylogenetic analyses support G. pseudorasborae is a member of the genus Gyrodactylus and Gyrodactylidae forms an independent monophyletic clade within Gyrodactylidea. Furthermore, the mitochondrial genome of G. pseudorasborae is the shortest in the Gyrodactylidea species compared with size differences in NCR.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"34"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11225-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Gyrodactylus von Nordmann, 1832, a genus of viviparous parasites within the family Gyrodactylidae, contains one of the largest nominal species in the world. Gyrodactylus pseudorasborae Ondračková, Seifertová & Tkachenko, 2023 widely distributed in Europe and China, although its mitochondrial genome remains unclear. This study aims to sequence the mitogenome of G.pseudorasborae and clarify its phylogenetic relationship within the Gyrodactylidea. The mitochondrial genome of G. pseudorasborae was amplified in six parts from a single parasite, sequenced using primer walking, annotated and analyzed using bioinformatic tools.

Results: The mitochondrial genome of G. pseudorasborae is 14,189 bp in length, containing 12 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs), and two major non-coding regions (NCR: NC1 and NC2). The overall A + T content of the mitogenome is 73.1%, a medium content compared with all reported mitochondrial genomes of monogeneans. The mitogenome of G. pseudorasborae presents a clear bias in nucleotide composition with a negative AT skew and a positive GC skew except for NCR. All tRNAs have the typical cloverleaf secondary structure except for tRNACys, tRNASer1, and tRNASer2, which lack the dihydrouridine (DHU) arm. Furthermore, one repetitive non-coding region of 32 bp repeats occurred in the NC1 region with poly-T stretch, stem-loop structure, and TAn motif. The gene order is identical to the mitochondrial genomes reported from other Gyrodactylus species except Gyrodactylus nyanzae Paperna, 1973 and Gyrodactylus sp. FZ-2021. Phylogenetic analyses show that G. pseudorasborae and Gyrodactylus parvae You, Easy & Cone, 2008 cluster together with high nodal support based on 12 PCGs sequences and amino acid sequences, Gyrodactylidae forms independent monophyletic clade within Gyrodactylidea.

Conclusion: Both the mitochondrial genome and phylogenetic analyses support G. pseudorasborae is a member of the genus Gyrodactylus and Gyrodactylidae forms an independent monophyletic clade within Gyrodactylidea. Furthermore, the mitochondrial genome of G. pseudorasborae is the shortest in the Gyrodactylidea species compared with size differences in NCR.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Genomics
BMC Genomics 生物-生物工程与应用微生物
CiteScore
7.40
自引率
4.50%
发文量
769
审稿时长
6.4 months
期刊介绍: BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics. BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Genomic strategies to facilitate breeding for increased β-Glucan content in oat (Avena sativa L.). Characterization of chemosensory genes in the subterranean pest Gryllotalpa Orientalis based on genome assembly and transcriptome comparison. Comparative analysis of the whole transcriptome landscapes of muscle and adipose tissue in Qinchuan beef cattle. Genome-wide association study identifies candidate genes affecting body conformation traits of Zhongwei goat. Slight thermal stress exerts genetic diversity selection at coral (Acropora digitifera) larval stages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1