Enantioselective OTUD7B fragment discovery through chemoproteomics screening and high-throughput optimisation.

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Communications Chemistry Pub Date : 2025-01-15 DOI:10.1038/s42004-025-01410-8
Aini Vuorinen, Cassandra R Kennedy, Katherine A McPhie, William McCarthy, Jonathan Pettinger, J Mark Skehel, David House, Jacob T Bush, Katrin Rittinger
{"title":"Enantioselective OTUD7B fragment discovery through chemoproteomics screening and high-throughput optimisation.","authors":"Aini Vuorinen, Cassandra R Kennedy, Katherine A McPhie, William McCarthy, Jonathan Pettinger, J Mark Skehel, David House, Jacob T Bush, Katrin Rittinger","doi":"10.1038/s42004-025-01410-8","DOIUrl":null,"url":null,"abstract":"<p><p>Deubiquitinating enzymes (DUBs) are key regulators of cellular homoeostasis, and their dysregulation is associated with several human diseases. The ovarian tumour protease (OTU) family of DUBs are biochemically well-characterised and of therapeutic interest, yet only a few tool compounds exist to study their cellular function and therapeutic potential. Here we present a chemoproteomics fragment screening platform for identifying novel DUB-specific hit matter, that combines activity-based protein profiling with high-throughput chemistry direct-to-biology optimisation to enable rapid elaboration of initial fragment hits against OTU DUBs. Applying these approaches, we identify an enantioselective covalent fragment for OTUD7B, and validate it using chemoproteomics and biochemical DUB activity assays.</p>","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":"8 1","pages":"12"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1038/s42004-025-01410-8","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Deubiquitinating enzymes (DUBs) are key regulators of cellular homoeostasis, and their dysregulation is associated with several human diseases. The ovarian tumour protease (OTU) family of DUBs are biochemically well-characterised and of therapeutic interest, yet only a few tool compounds exist to study their cellular function and therapeutic potential. Here we present a chemoproteomics fragment screening platform for identifying novel DUB-specific hit matter, that combines activity-based protein profiling with high-throughput chemistry direct-to-biology optimisation to enable rapid elaboration of initial fragment hits against OTU DUBs. Applying these approaches, we identify an enantioselective covalent fragment for OTUD7B, and validate it using chemoproteomics and biochemical DUB activity assays.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
期刊最新文献
Enantioselective OTUD7B fragment discovery through chemoproteomics screening and high-throughput optimisation. Human interpretable structure-property relationships in chemistry using explainable machine learning and large language models. Local structure of amorphous sulfur in carbon-sulfur composites for all-solid-state lithium-sulfur batteries. Biosynthesis of lactacystin as a proteasome inhibitor. Excited state dynamics of azanaphthalenes reveal opportunities for the rational design of photoactive molecules.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1