{"title":"A first-in-human clinical study of an allogenic iPSC-derived corneal endothelial cell substitute transplantation for bullous keratopathy.","authors":"Masatoshi Hirayama, Shin Hatou, Masaki Nomura, Risa Hokama, Osama Ibrahim Hirayama, Emi Inagaki, Kumi Aso, Tomoko Sayano, Hiromi Dohi, Tadaaki Hanatani, Naoko Takasu, Hideyuki Okano, Kazuno Negishi, Shigeto Shimmura","doi":"10.1016/j.xcrm.2024.101847","DOIUrl":null,"url":null,"abstract":"<p><p>A first-in-human investigator-initiated clinical study of a corneal endothelial cell substitute (CLS001) derived from a clinical-grade induced pluripotent stem cell (iPSC) line shows improvement of visual acuity and corneal stromal edema, with no adverse events for up to 1 year after surgery for the treatment of bullous keratopathy. While preclinical tests, including multiple whole-genome analysis and tumorigenicity tests adhering to the Food and Drug Administration (FDA) draft guidelines, are negative, an additional whole-genome analysis conducted on transplanted CLS001 cells reveals a de novo in-frame deletion of exon22 in the EP300 gene. No adverse events related to the mutation are observed. Our study demonstrates the feasibility of using iPSC-derived cells to replace donor transplant for bullous keratopathy, while shedding light on risk management of gene mutation in cell products. Further follow-up is required for long-term analysis of clinical safety and efficacy.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":" ","pages":"101847"},"PeriodicalIF":11.7000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101847","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/13 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
A first-in-human investigator-initiated clinical study of a corneal endothelial cell substitute (CLS001) derived from a clinical-grade induced pluripotent stem cell (iPSC) line shows improvement of visual acuity and corneal stromal edema, with no adverse events for up to 1 year after surgery for the treatment of bullous keratopathy. While preclinical tests, including multiple whole-genome analysis and tumorigenicity tests adhering to the Food and Drug Administration (FDA) draft guidelines, are negative, an additional whole-genome analysis conducted on transplanted CLS001 cells reveals a de novo in-frame deletion of exon22 in the EP300 gene. No adverse events related to the mutation are observed. Our study demonstrates the feasibility of using iPSC-derived cells to replace donor transplant for bullous keratopathy, while shedding light on risk management of gene mutation in cell products. Further follow-up is required for long-term analysis of clinical safety and efficacy.
Cell Reports MedicineBiochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍:
Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine.
Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.