André Miguel Martinez Júnior, Vera Aparecida de Oliveira, Marcio José Tiera
{"title":"O-substituted Tertiary Amine-chitosans as Promising Nanocarriers for siRNA Delivery.","authors":"André Miguel Martinez Júnior, Vera Aparecida de Oliveira, Marcio José Tiera","doi":"10.2174/0115665232335957241122164034","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>The clinical translation of chitosan-based formulations for siRNA delivery has been partially limited by their poor stability/solubility at physiological conditions, although they have good biocompatibility and cost-effectiveness.</p><p><strong>Method: </strong>In this study, the chitosan was O-substituted with diisopropylethylamine (DIPEA) groups, which improved its solubility at pH 7.4 by increasing the degree of ionization and enhanced the ability of chitosan to load siRNA at very low amine/phosphate (N/P) ratios. The O-DIPEAchitosan/ siRNA nanopolyplexes were self-assembled by complexation and presented positive Zeta potentials (ζ = +8 to +10 mV), spherical-like morphology, 200-300 nm size, low polydispersity index (PDI < 0.2), and were able to protect the siRNA from degradation by RNAse. Also, the resistance to albumin-induced disassembly and aggregation revealed both good structural and colloidal stabilities of the siRNA nanopolyplexes.</p><p><strong>Result: </strong>The nanopolyplexes displayed low cytotoxicities in RAW 264.7 macrophages and were successfully uptaken by both macrophages and HeLa cells achieving internalization efficiency similar to Lipofectamine. A positive correlation was observed between the physicochemical properties of the siRNA nanocarrier and its transfection efficiency.</p><p><strong>Conclusion: </strong>A knockdown of about 60-70% of tumor necrosis factor alpha (TNFα) was reached in lipopolysaccharide-stimulated macrophages treated with O-DIPEA-chitosan/siTNFα nanopolyplexes. Overall, the results confirmed that O-DIPEA chitosans are promising carriers for siRNA delivery.</p>","PeriodicalId":10798,"journal":{"name":"Current gene therapy","volume":" ","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current gene therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115665232335957241122164034","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: The clinical translation of chitosan-based formulations for siRNA delivery has been partially limited by their poor stability/solubility at physiological conditions, although they have good biocompatibility and cost-effectiveness.
Method: In this study, the chitosan was O-substituted with diisopropylethylamine (DIPEA) groups, which improved its solubility at pH 7.4 by increasing the degree of ionization and enhanced the ability of chitosan to load siRNA at very low amine/phosphate (N/P) ratios. The O-DIPEAchitosan/ siRNA nanopolyplexes were self-assembled by complexation and presented positive Zeta potentials (ζ = +8 to +10 mV), spherical-like morphology, 200-300 nm size, low polydispersity index (PDI < 0.2), and were able to protect the siRNA from degradation by RNAse. Also, the resistance to albumin-induced disassembly and aggregation revealed both good structural and colloidal stabilities of the siRNA nanopolyplexes.
Result: The nanopolyplexes displayed low cytotoxicities in RAW 264.7 macrophages and were successfully uptaken by both macrophages and HeLa cells achieving internalization efficiency similar to Lipofectamine. A positive correlation was observed between the physicochemical properties of the siRNA nanocarrier and its transfection efficiency.
Conclusion: A knockdown of about 60-70% of tumor necrosis factor alpha (TNFα) was reached in lipopolysaccharide-stimulated macrophages treated with O-DIPEA-chitosan/siTNFα nanopolyplexes. Overall, the results confirmed that O-DIPEA chitosans are promising carriers for siRNA delivery.
期刊介绍:
Current Gene Therapy is a bi-monthly peer-reviewed journal aimed at academic and industrial scientists with an interest in major topics concerning basic research and clinical applications of gene and cell therapy of diseases. Cell therapy manuscripts can also include application in diseases when cells have been genetically modified. Current Gene Therapy publishes full-length/mini reviews and original research on the latest developments in gene transfer and gene expression analysis, vector development, cellular genetic engineering, animal models and human clinical applications of gene and cell therapy for the treatment of diseases.
Current Gene Therapy publishes reviews and original research containing experimental data on gene and cell therapy. The journal also includes manuscripts on technological advances, ethical and regulatory considerations of gene and cell therapy. Reviews should provide the reader with a comprehensive assessment of any area of experimental biology applied to molecular medicine that is not only of significance within a particular field of gene therapy and cell therapy but also of interest to investigators in other fields. Authors are encouraged to provide their own assessment and vision for future advances. Reviews are also welcome on late breaking discoveries on which substantial literature has not yet been amassed. Such reviews provide a forum for sharply focused topics of recent experimental investigations in gene therapy primarily to make these results accessible to both clinical and basic researchers. Manuscripts containing experimental data should be original data, not previously published.