An Integrative Computational Approach for the Identification of C-Abl Kinase Inhibitors from Anti-Parkinson Plant-Derived Bioactive.

IF 1.9 4区 医学 Q3 CHEMISTRY, MEDICINAL Medicinal Chemistry Pub Date : 2025-01-13 DOI:10.2174/0115734064310145240822060730
Haruna Isiyaku Umar, Zainab Ashimiyu-Abdusalam, Neeraj Kumar, Najwa Ahmad Kuthi, Omoboyede Victor, Zainab Naeem Abdulsalam, Elizabeth Oluwabunmi Aribo, Ridwan Opeyemi Bello, Yousef A Bin Jardan, Hiba-Allah Nafidi, Mohammed Bourhia
{"title":"An Integrative Computational Approach for the Identification of C-Abl Kinase Inhibitors from Anti-Parkinson Plant-Derived Bioactive.","authors":"Haruna Isiyaku Umar, Zainab Ashimiyu-Abdusalam, Neeraj Kumar, Najwa Ahmad Kuthi, Omoboyede Victor, Zainab Naeem Abdulsalam, Elizabeth Oluwabunmi Aribo, Ridwan Opeyemi Bello, Yousef A Bin Jardan, Hiba-Allah Nafidi, Mohammed Bourhia","doi":"10.2174/0115734064310145240822060730","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential. Despite three generations of tyrosine kinase inhibitors (TKIs) being explored for PD treatment, they present significant concerns including poor blood-brain barrier penetration, off-target effects, and severe side effects. Notably, there are currently no FDA-approved c-Abl kinase inhibitors in clinical usage for PD treatment, highlighting the urgent need for potent, safe, and cost-effective alternatives.</p><p><strong>Objective: </strong>This study aims to identify potential c-Abl kinase inhibitors from plant-derived compounds with reported anti-Parkinson's potential and their derivatives using molecular docking, molecular dynamics simulations (MDS), and in silico pharmacokinetics and toxicity profiling.</p><p><strong>Methods: </strong>Seventy-eight compounds sourced from literature were docked against c-Abl kinase using Maestro 12.5. The top three hit compounds, along with nilotinib (control drug), were subjected to drug-likeness, ADMET profiling using the AI Drug Lab server and 100 ns MDS using Desmond.</p><p><strong>Results: </strong>Amburoside A, diarylheptanoid MS13, and dimethylaminomethyl-substituted-curcumin showed binding affinities close to nilotinib, with values of -12.615, -12.556, and -11.895 kcal/mol respectively, compared to nilotinib's -16.826 kcal/mol. The three plant-derived compounds exhibited excellent structural stability and favorable ADMET profiles, including optimal blood-brain barrier permeation Conclusion: The three hit compounds identified in this study show potential as c-Abl kinase inhibitors. Given the absence of FDA-approved c-Abl kinase inhibitors for PD, these findings are significant as they could contribute new therapeutic options for the treatment and management of PD. However, further in vitro and in vivo experiments are necessary to validate these findings.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064310145240822060730","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Oxidative stress is strongly linked to neurodegeneration through the activation of c-Abl kinase, which arrests α-synuclein proteolysis by interacting with parkin interacting substrate (PARIS) and aminoacyl tRNA synthetase complex-interacting multifunctional protein 2 (AIMP2). This activation, triggered by ataxia-telangiectasia mutated (ATM) kinase, leads to dopaminergic neuron loss and α-synuclein aggregation, a critical pathophysiological aspect of Parkinson's disease (PD). To halt PD progression, pharmacological inhibition of c-Abl kinase is essential. Despite three generations of tyrosine kinase inhibitors (TKIs) being explored for PD treatment, they present significant concerns including poor blood-brain barrier penetration, off-target effects, and severe side effects. Notably, there are currently no FDA-approved c-Abl kinase inhibitors in clinical usage for PD treatment, highlighting the urgent need for potent, safe, and cost-effective alternatives.

Objective: This study aims to identify potential c-Abl kinase inhibitors from plant-derived compounds with reported anti-Parkinson's potential and their derivatives using molecular docking, molecular dynamics simulations (MDS), and in silico pharmacokinetics and toxicity profiling.

Methods: Seventy-eight compounds sourced from literature were docked against c-Abl kinase using Maestro 12.5. The top three hit compounds, along with nilotinib (control drug), were subjected to drug-likeness, ADMET profiling using the AI Drug Lab server and 100 ns MDS using Desmond.

Results: Amburoside A, diarylheptanoid MS13, and dimethylaminomethyl-substituted-curcumin showed binding affinities close to nilotinib, with values of -12.615, -12.556, and -11.895 kcal/mol respectively, compared to nilotinib's -16.826 kcal/mol. The three plant-derived compounds exhibited excellent structural stability and favorable ADMET profiles, including optimal blood-brain barrier permeation Conclusion: The three hit compounds identified in this study show potential as c-Abl kinase inhibitors. Given the absence of FDA-approved c-Abl kinase inhibitors for PD, these findings are significant as they could contribute new therapeutic options for the treatment and management of PD. However, further in vitro and in vivo experiments are necessary to validate these findings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从抗帕金森植物源性生物活性中鉴定C-Abl激酶抑制剂的综合计算方法
背景:氧化应激通过激活c-Abl激酶与神经退行性变密切相关,c-Abl激酶通过与parkin相互作用底物(PARIS)和氨基酰基tRNA合成酶复合物相互作用多功能蛋白2 (AIMP2)相互作用,阻止α-突触核蛋白水解。这种激活由共济失调毛细血管扩张突变(ATM)激酶触发,导致多巴胺能神经元丢失和α-突触核蛋白聚集,这是帕金森病(PD)的一个关键病理生理方面。为了阻止PD的进展,药物抑制c-Abl激酶是必不可少的。尽管三代酪氨酸激酶抑制剂(TKIs)正在探索用于PD治疗,但它们存在严重的问题,包括血脑屏障穿透能力差,脱靶效应和严重的副作用。值得注意的是,目前还没有fda批准的c-Abl激酶抑制剂用于帕金森病的临床治疗,这突出了迫切需要有效、安全、经济的替代品。目的:本研究旨在通过分子对接、分子动力学模拟(MDS)、计算机药代动力学和毒性分析,从具有抗帕金森病潜力的植物源化合物及其衍生物中鉴定潜在的c-Abl激酶抑制剂。方法:利用Maestro 12.5对文献中78种化合物进行c-Abl激酶对接。前三名hit化合物以及尼罗替尼(对照药物)进行药物相似,使用AI药物实验室服务器进行ADMET分析,并使用Desmond进行100 ns MDS。结果:氨溴苷A、二烷基七烷类化合物MS13和二甲胺甲基取代姜黄素的结合亲和力与尼洛替尼接近,分别为-12.615、-12.556和-11.895 kcal/mol,而尼洛替尼的结合亲和力为-16.826 kcal/mol。结论:本研究鉴定的三种hit化合物具有作为c-Abl激酶抑制剂的潜力。鉴于缺乏fda批准的用于PD的c-Abl激酶抑制剂,这些发现具有重要意义,因为它们可以为PD的治疗和管理提供新的治疗选择。然而,需要进一步的体外和体内实验来验证这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
期刊最新文献
Exploring Pyridine-Based Schemes: A Comprehensive Review on their Synthesis and Therapeutic Applications. Integrating Machine Learning and Pharmacophore Features for Enhanced Prediction of H1 Receptor Blockers. Pyridine Derivatives: A Comprehensive Review of Their Potential as Anti-Diabetic Agents. A Comprehensive Review: Synthesis and Pharmacological Activities of 1,3,4-Oxadiazole Hybrid Scaffolds. Advances in Structural Types and Pharmacochemistry of CDK12 Inhibitors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1