Stanislav Opekar, Helena Zahradníčková, Petr Vodrážka, Lucie Řimnáčová, Martin Moos, Petr Šimek
{"title":"A Protocol for GC-MS Profiling of Chiral Secondary Amino Acids.","authors":"Stanislav Opekar, Helena Zahradníčková, Petr Vodrážka, Lucie Řimnáčová, Martin Moos, Petr Šimek","doi":"10.1007/978-1-0716-4334-1_11","DOIUrl":null,"url":null,"abstract":"<p><p>A simple analytical workflow is described for gas chromatographic-mass spectrometric (GC-MS)-based chiral profiling of secondary amino acids (AAs) in biological matrices. The sample preparation is carried out directly in aqueous biological sample extracts and involves in situ heptafluorobutyl chloroformate (HFBCF) derivatization-liquid-liquid microextraction of nonpolar products into hexane phase followed by subsequent formation of the corresponding methylamides from the HFB esters by direct treatment with methylamine reagent solution. The (O, N) HFB-butoxycarbonyl-methylamide AA products (HFBOC-MA) are separated on a Chirasil-L-Val capillary column and quantitatively measured by GC-MS operated in selected ion monitoring (SIM) mode. The protocol includes 12 simple pipetting steps and covers the quantitative analysis of 8 L, D pairs of secondary amino acids, including proline, isomeric 3-, 4-hydroxyprolines, pipecolic acid, nipecotic acid, azetidine-2-carboxylic acid, and cis- and trans-5-hydroxy-L-pipecolic acid using <sup>13</sup>C<sub>5</sub> -L-proline as an internal standard. The individual analytical steps are commented on and explained, with emphasis on the chiral GC-MS analysis of secondary amino acids in human urine, serum, and peptide hydrolysate samples.</p>","PeriodicalId":18490,"journal":{"name":"Methods in molecular biology","volume":"2891 ","pages":"205-219"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methods in molecular biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-1-0716-4334-1_11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
A simple analytical workflow is described for gas chromatographic-mass spectrometric (GC-MS)-based chiral profiling of secondary amino acids (AAs) in biological matrices. The sample preparation is carried out directly in aqueous biological sample extracts and involves in situ heptafluorobutyl chloroformate (HFBCF) derivatization-liquid-liquid microextraction of nonpolar products into hexane phase followed by subsequent formation of the corresponding methylamides from the HFB esters by direct treatment with methylamine reagent solution. The (O, N) HFB-butoxycarbonyl-methylamide AA products (HFBOC-MA) are separated on a Chirasil-L-Val capillary column and quantitatively measured by GC-MS operated in selected ion monitoring (SIM) mode. The protocol includes 12 simple pipetting steps and covers the quantitative analysis of 8 L, D pairs of secondary amino acids, including proline, isomeric 3-, 4-hydroxyprolines, pipecolic acid, nipecotic acid, azetidine-2-carboxylic acid, and cis- and trans-5-hydroxy-L-pipecolic acid using 13C5 -L-proline as an internal standard. The individual analytical steps are commented on and explained, with emphasis on the chiral GC-MS analysis of secondary amino acids in human urine, serum, and peptide hydrolysate samples.
期刊介绍:
For over 20 years, biological scientists have come to rely on the research protocols and methodologies in the critically acclaimed Methods in Molecular Biology series. The series was the first to introduce the step-by-step protocols approach that has become the standard in all biomedical protocol publishing. Each protocol is provided in readily-reproducible step-by-step fashion, opening with an introductory overview, a list of the materials and reagents needed to complete the experiment, and followed by a detailed procedure that is supported with a helpful notes section offering tips and tricks of the trade as well as troubleshooting advice.