In Silico Structural Insights into a Glucanase from Clostridium perfringens and Prediction of Structural Stability Improvement Through Hydrophobic Interaction Network and Aromatic Interaction.

IF 2.4 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Biotechnology Pub Date : 2025-01-15 DOI:10.1007/s12033-025-01371-2
Nima Ghahremani Nezhad, Azadeh Eskandari, Oluwaloni Folusho Omotayo, Samah Hashim Albayati, Sunusi Bataiya Buhari, Thean Chor Leow
{"title":"In Silico Structural Insights into a Glucanase from Clostridium perfringens and Prediction of Structural Stability Improvement Through Hydrophobic Interaction Network and Aromatic Interaction.","authors":"Nima Ghahremani Nezhad, Azadeh Eskandari, Oluwaloni Folusho Omotayo, Samah Hashim Albayati, Sunusi Bataiya Buhari, Thean Chor Leow","doi":"10.1007/s12033-025-01371-2","DOIUrl":null,"url":null,"abstract":"<p><p>Glucanases are widely applied in industrial applications such as brewing, biomass conversion, food, and animal feed. Glucanases catalyze the hydrolysis of glucan to produce the sugar hemiacetal through hydrolytic cleavage of glycosidic bonds. Current study aimed to investigate structural insights of a glucanase from Clostridium perfringens through blind molecular docking, site-specific molecular docking, molecular dynamics (MD) simulation, and binding energy calculation. Furthermore, we aimed to enhance structural stabilization through formation of hydrophobic interaction network. The molecular docking results illustrated that residues Glu222 and Asp187 may act as nucleophile acid/base catalyst. Moreover, the MM/PBSA results illustrated a high binding affinity of 108.71 ± 8.5 kJ/mol between glucanase and barely glucan during 100 ns simulation. The RMSF analysis illustrated a high flexible surface loop with the highest mobility at position D130. Therefore, the structural engineering was carried out through introducing a double-mutant S125Y/D130P, and the structural stability was improved by forming the hydrophobic interaction network and one π-π aromatic interaction. The spatial distance between the mutation sites and the catalytic pocket attenuates their direct impact on binding interactions within the catalytic pocket.</p>","PeriodicalId":18865,"journal":{"name":"Molecular Biotechnology","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12033-025-01371-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Glucanases are widely applied in industrial applications such as brewing, biomass conversion, food, and animal feed. Glucanases catalyze the hydrolysis of glucan to produce the sugar hemiacetal through hydrolytic cleavage of glycosidic bonds. Current study aimed to investigate structural insights of a glucanase from Clostridium perfringens through blind molecular docking, site-specific molecular docking, molecular dynamics (MD) simulation, and binding energy calculation. Furthermore, we aimed to enhance structural stabilization through formation of hydrophobic interaction network. The molecular docking results illustrated that residues Glu222 and Asp187 may act as nucleophile acid/base catalyst. Moreover, the MM/PBSA results illustrated a high binding affinity of 108.71 ± 8.5 kJ/mol between glucanase and barely glucan during 100 ns simulation. The RMSF analysis illustrated a high flexible surface loop with the highest mobility at position D130. Therefore, the structural engineering was carried out through introducing a double-mutant S125Y/D130P, and the structural stability was improved by forming the hydrophobic interaction network and one π-π aromatic interaction. The spatial distance between the mutation sites and the catalytic pocket attenuates their direct impact on binding interactions within the catalytic pocket.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对产气荚膜梭菌葡聚糖酶的硅学结构洞察,以及通过疏水相互作用网络和芳香族相互作用改善结构稳定性的预测。
葡聚糖酶广泛应用于酿造、生物质转化、食品和动物饲料等工业领域。葡聚糖酶通过对糖苷键的水解裂解,催化葡聚糖水解生成半缩醛糖。本研究旨在通过盲分子对接、位点特异性分子对接、分子动力学模拟和结合能计算等方法研究产气荚膜梭菌葡聚糖酶的结构。此外,我们旨在通过形成疏水相互作用网络来增强结构稳定性。分子对接结果表明,残基Glu222和Asp187可能是亲核酸/碱催化剂。此外,MM/PBSA结果表明,在100 ns模拟过程中,葡聚糖酶与裸葡聚糖的结合亲和力为108.71±8.5 kJ/mol。RMSF分析表明,在D130位置具有最高迁移率的高柔性表面环。因此,通过引入双突变体S125Y/D130P进行结构工程,通过形成疏水相互作用网络和1个π-π芳香相互作用来提高结构稳定性。突变位点与催化袋之间的空间距离减弱了它们对催化袋内结合相互作用的直接影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Biotechnology
Molecular Biotechnology 医学-生化与分子生物学
CiteScore
4.10
自引率
3.80%
发文量
165
审稿时长
6 months
期刊介绍: Molecular Biotechnology publishes original research papers on the application of molecular biology to both basic and applied research in the field of biotechnology. Particular areas of interest include the following: stability and expression of cloned gene products, cell transformation, gene cloning systems and the production of recombinant proteins, protein purification and analysis, transgenic species, developmental biology, mutation analysis, the applications of DNA fingerprinting, RNA interference, and PCR technology, microarray technology, proteomics, mass spectrometry, bioinformatics, plant molecular biology, microbial genetics, gene probes and the diagnosis of disease, pharmaceutical and health care products, therapeutic agents, vaccines, gene targeting, gene therapy, stem cell technology and tissue engineering, antisense technology, protein engineering and enzyme technology, monoclonal antibodies, glycobiology and glycomics, and agricultural biotechnology.
期刊最新文献
Investigation of Circular RNA Expression Profiles in Ultrasound-guided Incomplete Radiofrequency Ablation Transplanted Tumor Models of Human Liver Cancer. Endoplasmic Reticulum Stress Promotes Neuronal Damage in Neonatal Hypoxic-Ischemic Brain Damage by Inducing Ferroptosis. An Analysis Regarding the Association Between DAZ Interacting Zinc Finger Protein 1 (DZIP1) and Colorectal Cancer (CRC). Integrin β4 Regulates Cell Migration of Lung Adenocarcinoma Through FAK Signaling. From Efficiency to Yield: Exploring Recent Advances in CHO Cell Line Development for Monoclonal Antibodies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1