Conspecific interactions between corals mediate the effect of submarine groundwater discharge on coral physiology.

IF 2.3 2区 环境科学与生态学 Q2 ECOLOGY Oecologia Pub Date : 2025-01-15 DOI:10.1007/s00442-024-05660-6
Jamie R Kerlin, Danielle M Barnas, Nyssa J Silbiger
{"title":"Conspecific interactions between corals mediate the effect of submarine groundwater discharge on coral physiology.","authors":"Jamie R Kerlin, Danielle M Barnas, Nyssa J Silbiger","doi":"10.1007/s00442-024-05660-6","DOIUrl":null,"url":null,"abstract":"<p><p>Land-based inputs, such as runoff, rivers, and submarine groundwater, can alter biologic processes on coral reefs. While the abiotic factors associated with land-based inputs have strong effects on corals, corals are also affected by biotic interactions, including other neighboring corals. The biologic responses of corals to changing environmental conditions and their neighbors are likely interactive; however, few studies address both biotic and abiotic interactions in concert. In a manipulative field experiment, we tested how the natural environmental gradient created by submarine groundwater discharge (SGD) affected holobiont and symbiont metabolic rates and endosymbiont physiology of Porites rus. We further tested how the effect of SGD on the coral was mediated by intra and interspecific interactions. SGD is a natural land-sea connection that delivers nutrients, inorganic carbon, and other solutes to coastal ecosystems worldwide. Our results show that a natural gradient of nutrient enrichment and pH variability as a result of acute SGD exposure generally benefited P. rus, increasing gross photosynthesis, respiration, endosymbiont densities, and chlorophyll a content. Conspecifics in direct contact with the a neighboring coral, however, altered the relationship between coral physiology and SGD, lowering the photosynthetic and respiration rates from expected values when the coral had no neighbor. We show that the response of corals to environmental change is dependent on the types of nearby neighbor corals and how neighbors alter the chemical or physical environment around the coral. Our study underscores the importance of considering biotic interactions when predicting the physiologic responses of corals to the environment.</p>","PeriodicalId":19473,"journal":{"name":"Oecologia","volume":"207 1","pages":"21"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oecologia","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s00442-024-05660-6","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Land-based inputs, such as runoff, rivers, and submarine groundwater, can alter biologic processes on coral reefs. While the abiotic factors associated with land-based inputs have strong effects on corals, corals are also affected by biotic interactions, including other neighboring corals. The biologic responses of corals to changing environmental conditions and their neighbors are likely interactive; however, few studies address both biotic and abiotic interactions in concert. In a manipulative field experiment, we tested how the natural environmental gradient created by submarine groundwater discharge (SGD) affected holobiont and symbiont metabolic rates and endosymbiont physiology of Porites rus. We further tested how the effect of SGD on the coral was mediated by intra and interspecific interactions. SGD is a natural land-sea connection that delivers nutrients, inorganic carbon, and other solutes to coastal ecosystems worldwide. Our results show that a natural gradient of nutrient enrichment and pH variability as a result of acute SGD exposure generally benefited P. rus, increasing gross photosynthesis, respiration, endosymbiont densities, and chlorophyll a content. Conspecifics in direct contact with the a neighboring coral, however, altered the relationship between coral physiology and SGD, lowering the photosynthetic and respiration rates from expected values when the coral had no neighbor. We show that the response of corals to environmental change is dependent on the types of nearby neighbor corals and how neighbors alter the chemical or physical environment around the coral. Our study underscores the importance of considering biotic interactions when predicting the physiologic responses of corals to the environment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Oecologia
Oecologia 环境科学-生态学
CiteScore
5.10
自引率
0.00%
发文量
192
审稿时长
5.3 months
期刊介绍: Oecologia publishes innovative ecological research of international interest. We seek reviews, advances in methodology, and original contributions, emphasizing the following areas: Population ecology, Plant-microbe-animal interactions, Ecosystem ecology, Community ecology, Global change ecology, Conservation ecology, Behavioral ecology and Physiological Ecology. In general, studies that are purely descriptive, mathematical, documentary, and/or natural history will not be considered.
期刊最新文献
Conspecific interactions between corals mediate the effect of submarine groundwater discharge on coral physiology. A macroevolutionary perspective of cryptic coloration in sexually dichromatic grasshoppers of the genus Sphenarium (Orthoptera: Pyrgomorphidae). Will climate warming amplify the effects of a range-expanding marine predator? High grazing pressure accelerates changes in community assembly over time in a long-term grazing experiment in the desert steppe of northern China. Evolution of competitive ability and the response to nutrient availability: a resurrection study with the calcareous grassland herb, Leontodon hispidus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1