Using hyperspectral reflectance to detect changes in photosynthetic activity in Atractylodes chinensis leaves as a function of decreasing soil water content.
{"title":"Using hyperspectral reflectance to detect changes in photosynthetic activity in <i>Atractylodes chinensis</i> leaves as a function of decreasing soil water content.","authors":"J Liu, Y Wang, X M Lin, Z C Xue, F R Zeng","doi":"10.32615/ps.2024.040","DOIUrl":null,"url":null,"abstract":"<p><p>Application of hyperspectral reflectance technology to track changes in photosynthetic activity in <i>Atractylodes chinensis</i> (<i>A. chinensis</i>) remains underexplored. This study aimed to investigate the relationship between hyperspectral reflectance and photosynthetic activity in the leaves of <i>A. chinensis</i> in response to a decrease in soil water content. Results demonstrated that the reflectance in both the visible light and near-infrared bands increased in conjunction with reduced soil water content. The derived vegetable indices of photochemical reflection index (PRI) and the pigment-specific simple ratio of chlorophyll <i>b</i> (PSSR<sub>b</sub>) gradually decreased. In contrast, the normalized difference in water index (NWI) and water index (WI) increased. Moreover, significant correlations were observed between PRI, PSSR<sub>b</sub>, WI, and NWI and photosynthetic activity indices, namely photosynthetic rate and total performance index. Consequently, hyperspectral reflection represents a productive approach for evaluating the influence of water deficit on photosynthetic activity in <i>A. chinensis</i> leaves.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"62 4","pages":"372-380"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11726290/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2024.040","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Application of hyperspectral reflectance technology to track changes in photosynthetic activity in Atractylodes chinensis (A. chinensis) remains underexplored. This study aimed to investigate the relationship between hyperspectral reflectance and photosynthetic activity in the leaves of A. chinensis in response to a decrease in soil water content. Results demonstrated that the reflectance in both the visible light and near-infrared bands increased in conjunction with reduced soil water content. The derived vegetable indices of photochemical reflection index (PRI) and the pigment-specific simple ratio of chlorophyll b (PSSRb) gradually decreased. In contrast, the normalized difference in water index (NWI) and water index (WI) increased. Moreover, significant correlations were observed between PRI, PSSRb, WI, and NWI and photosynthetic activity indices, namely photosynthetic rate and total performance index. Consequently, hyperspectral reflection represents a productive approach for evaluating the influence of water deficit on photosynthetic activity in A. chinensis leaves.
期刊介绍:
Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side.
The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.