Recent Advances in Self-Powered Sensors Based on Ionic Hydrogels.

IF 11 1区 综合性期刊 Q1 Multidisciplinary Research Pub Date : 2025-01-14 eCollection Date: 2025-01-01 DOI:10.34133/research.0571
Jianyu Yin, Peixue Jia, Ziqi Ren, Qixiang Zhang, Wenzhong Lu, Qianqian Yao, Mingfang Deng, Xubin Zhou, Yihua Gao, Nishuang Liu
{"title":"Recent Advances in Self-Powered Sensors Based on Ionic Hydrogels.","authors":"Jianyu Yin, Peixue Jia, Ziqi Ren, Qixiang Zhang, Wenzhong Lu, Qianqian Yao, Mingfang Deng, Xubin Zhou, Yihua Gao, Nishuang Liu","doi":"10.34133/research.0571","DOIUrl":null,"url":null,"abstract":"<p><p>After years of research and development, flexible sensors are gradually evolving from the traditional \"electronic\" paradigm to the \"ionic\" dimension. Smart flexible sensors derived from the concept of ion transport are gradually emerging in the flexible electronics. In particular, ionic hydrogels have increasingly become the focus of research on flexible sensors as a result of their tunable conductivity, flexibility, biocompatibility, and self-healable capabilities. Nevertheless, the majority of existing sensors based on ionic hydrogels still mainly rely on external power sources, which greatly restrict the dexterity and convenience of their applications. Advances in energy harvesting technologies offer substantial potential toward engineering self-powered sensors. This article reviews in detail the self-powered mechanisms of ionic hydrogel self-powered sensors (IHSSs), including piezoelectric, triboelectric, ionic diode, moist-electric, thermoelectric, potentiometric transduction, and hybrid modes. At the same time, structural engineering related to device and material characteristics is discussed. Additionally, the relevant applications of IHSS toward wearable electronics, human-machine interaction, environmental monitoring, and medical diagnostics are further reviewed. Lastly, the challenges and prospective advancement of IHSS are outlined.</p>","PeriodicalId":21120,"journal":{"name":"Research","volume":"8 ","pages":"0571"},"PeriodicalIF":11.0000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729273/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.34133/research.0571","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Multidisciplinary","Score":null,"Total":0}
引用次数: 0

Abstract

After years of research and development, flexible sensors are gradually evolving from the traditional "electronic" paradigm to the "ionic" dimension. Smart flexible sensors derived from the concept of ion transport are gradually emerging in the flexible electronics. In particular, ionic hydrogels have increasingly become the focus of research on flexible sensors as a result of their tunable conductivity, flexibility, biocompatibility, and self-healable capabilities. Nevertheless, the majority of existing sensors based on ionic hydrogels still mainly rely on external power sources, which greatly restrict the dexterity and convenience of their applications. Advances in energy harvesting technologies offer substantial potential toward engineering self-powered sensors. This article reviews in detail the self-powered mechanisms of ionic hydrogel self-powered sensors (IHSSs), including piezoelectric, triboelectric, ionic diode, moist-electric, thermoelectric, potentiometric transduction, and hybrid modes. At the same time, structural engineering related to device and material characteristics is discussed. Additionally, the relevant applications of IHSS toward wearable electronics, human-machine interaction, environmental monitoring, and medical diagnostics are further reviewed. Lastly, the challenges and prospective advancement of IHSS are outlined.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Research
Research Multidisciplinary-Multidisciplinary
CiteScore
13.40
自引率
3.60%
发文量
0
审稿时长
14 weeks
期刊介绍: Research serves as a global platform for academic exchange, collaboration, and technological advancements. This journal welcomes high-quality research contributions from any domain, with open arms to authors from around the globe. Comprising fundamental research in the life and physical sciences, Research also highlights significant findings and issues in engineering and applied science. The journal proudly features original research articles, reviews, perspectives, and editorials, fostering a diverse and dynamic scholarly environment.
期刊最新文献
Engineering Active Interfaces on the Surface of Porous Single-Crystalline TiO2 Monoliths for Enhanced Catalytic Activity and Stability. Recent Advances in Asymmetric Wettability Dressings for Wound Exudate Management. Recent Advances in Self-Powered Sensors Based on Ionic Hydrogels. Advances in Nanoengineered Terahertz Technology: Generation, Modulation, and Bio-Applications. Transferrin Disassociates TCR from CD3 Signaling Apparatus to Promote Metastasis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1