{"title":"Establishing a GRU-GCN coordination-based prediction model for miRNA-disease associations.","authors":"Kai-Cheng Chuang, Ping-Sung Cheng, Yu-Hung Tsai, Meng-Hsiun Tsai","doi":"10.1186/s12863-024-01293-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>miRNAs (microRNAs) are endogenous RNAs with lengths of 18 to 24 nucleotides and play critical roles in gene regulation and disease progression. Although traditional wet-lab experiments provide direct evidence for miRNA-disease associations, they are often time-consuming and complicated to analyze by current bioinformatics tools. In recent years, machine learning (ML) and deep learning (DL) techniques are powerful tools to analyze large-scale biological data. Hence, developing a model to predict, identify, and rank connections in miRNAs and diseases can significantly enhance the precision and efficiency in investigating the relationships between miRNAs and diseases.</p><p><strong>Results: </strong>In this study, we utilized miRNA-disease association data obtained by biotechnological experiments to develop a DL model for miRNA-disease associations. To improve the accuracy of prediction in this model, we introduced two labeling strategies, weight-based and majority-based definitions, to classify miRNA-disease associations. After preprocessing, data was trained with a novel model combining gated recurrent units (GRU) and graph convolutional network (GCN) to predict the level of miRNA-disease associations. The miRNA-disease association datasets were from HMDD (the Human miRNA Disease Database) and categorized by two distinct labeling approaches, weight-based definitions and majority-based definitions. We classified the miRNA-disease associations into three groups, \"upregulated\", \"downregulated\" and \"nonspecific\", by regression analysis and multiclass classification. This GRU-GCN coordinated model achieved a robust area under the curve (AUC) score of 0.8 in all datasets, demonstrating the efficacy in predicting potential miRNA-disease relationships.</p><p><strong>Conclusions: </strong>By introducing innovative label-preprocessing methods, this study addressed the relationships between miRNAs and diseases, and improved the ambiguity of the results in different experiments. Based on these refined label definitions, we developed a DL-based model to refine and predict the results of associations between miRNAs and diseases. This model offers a valuable tool for complementing traditional experimental methods and enhancing our understanding of miRNA-related disease mechanisms.</p>","PeriodicalId":72427,"journal":{"name":"BMC genomic data","volume":"26 1","pages":"4"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11734345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC genomic data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s12863-024-01293-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: miRNAs (microRNAs) are endogenous RNAs with lengths of 18 to 24 nucleotides and play critical roles in gene regulation and disease progression. Although traditional wet-lab experiments provide direct evidence for miRNA-disease associations, they are often time-consuming and complicated to analyze by current bioinformatics tools. In recent years, machine learning (ML) and deep learning (DL) techniques are powerful tools to analyze large-scale biological data. Hence, developing a model to predict, identify, and rank connections in miRNAs and diseases can significantly enhance the precision and efficiency in investigating the relationships between miRNAs and diseases.
Results: In this study, we utilized miRNA-disease association data obtained by biotechnological experiments to develop a DL model for miRNA-disease associations. To improve the accuracy of prediction in this model, we introduced two labeling strategies, weight-based and majority-based definitions, to classify miRNA-disease associations. After preprocessing, data was trained with a novel model combining gated recurrent units (GRU) and graph convolutional network (GCN) to predict the level of miRNA-disease associations. The miRNA-disease association datasets were from HMDD (the Human miRNA Disease Database) and categorized by two distinct labeling approaches, weight-based definitions and majority-based definitions. We classified the miRNA-disease associations into three groups, "upregulated", "downregulated" and "nonspecific", by regression analysis and multiclass classification. This GRU-GCN coordinated model achieved a robust area under the curve (AUC) score of 0.8 in all datasets, demonstrating the efficacy in predicting potential miRNA-disease relationships.
Conclusions: By introducing innovative label-preprocessing methods, this study addressed the relationships between miRNAs and diseases, and improved the ambiguity of the results in different experiments. Based on these refined label definitions, we developed a DL-based model to refine and predict the results of associations between miRNAs and diseases. This model offers a valuable tool for complementing traditional experimental methods and enhancing our understanding of miRNA-related disease mechanisms.