Automated Detection of Filamentous Fungal Keratitis on Whole Slide Images of Potassium Hydroxide Smears with Multiple Instance Learning.

IF 3.2 Q1 OPHTHALMOLOGY Ophthalmology science Pub Date : 2024-11-12 eCollection Date: 2025-03-01 DOI:10.1016/j.xops.2024.100653
Jad F Assaf, Hady Yazbeck, Prajna N Venkatesh, Lalitha Prajna, Rameshkumar Gunasekaran, Karpagam Rajarathinam, Thomas M Lietman, Jeremy D Keenan, J Peter Campbell, Xubo Song, Travis K Redd
{"title":"Automated Detection of Filamentous Fungal Keratitis on Whole Slide Images of Potassium Hydroxide Smears with Multiple Instance Learning.","authors":"Jad F Assaf, Hady Yazbeck, Prajna N Venkatesh, Lalitha Prajna, Rameshkumar Gunasekaran, Karpagam Rajarathinam, Thomas M Lietman, Jeremy D Keenan, J Peter Campbell, Xubo Song, Travis K Redd","doi":"10.1016/j.xops.2024.100653","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The diagnosis of fungal keratitis using potassium hydroxide (KOH) smears of corneal scrapings enables initiation of the correct antimicrobial therapy at the point-of-care but requires time-consuming manual examination and expertise. This study evaluates the efficacy of a deep learning framework, dual stream multiple instance learning (DSMIL), in automating the analysis of whole slide imaging (WSI) of KOH smears for rapid and accurate detection of fungal infections.</p><p><strong>Design: </strong>Retrospective observational study.</p><p><strong>Participants: </strong>Corneal scrapings from 568 patients with suspected fungal keratitis; 51% contained filamentous fungi according to human expert interpretation.</p><p><strong>Methods: </strong>Dual stream multiple instance learning was employed to analyze WSI of KOH smears. Due to the extensive size of these images, often exceeding 100 000 pixels, conventional computer vision methods (e.g., convolutional neural networks) are not feasible. Dual stream multiple instance learning segments the WSI into patches for analysis, extracting relevant features from each patch and aggregating these to make a comprehensive slide-level diagnosis while generating heat maps to visualize areas contributing most to the prediction. Fivefold cross-validation was used for training and validation, with a hold-out test set comprising 15% of the total samples.</p><p><strong>Main outcome measures: </strong>Accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), F1 score, positive predictive value (PPV), and negative predictive value (NPV) in distinguishing fungal from nonfungal slides.</p><p><strong>Results: </strong>Dual stream multiple instance learning demonstrated an overall AUC of 0.88 with an accuracy of 79% and an F1 score of 0.79 in distinguishing fungal from nonfungal slides, with sensitivity of 85%, specificity of 71%, PPV of 80%, and NPV of 79%. For \"consensus cases,\" where 2 human graders agreed on the slide interpretation, the model achieved an accuracy of 85% and an F1 score of 0.85. For \"discrepant cases,\" the accuracy was 71% with an F1 score of 0.71. The generated heatmaps highlighted regions corresponding to fungal elements. Code and models are open-sourced and available at https://github.com/Redd-Cornea-AI/KOH-Smear-DSMIL.</p><p><strong>Conclusions: </strong>The DSMIL framework shows significant promise in automating interpretation of KOH smears. Its capability to handle large, high-resolution WSI data and accurately detect fungal infections, while providing visual explanations through heatmaps, could enhance the scalability of KOH smear interpretation, ultimately reducing the global burden of blindness from infectious keratitis.</p><p><strong>Financial disclosures: </strong>Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.</p>","PeriodicalId":74363,"journal":{"name":"Ophthalmology science","volume":"5 2","pages":"100653"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11731208/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ophthalmology science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xops.2024.100653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: The diagnosis of fungal keratitis using potassium hydroxide (KOH) smears of corneal scrapings enables initiation of the correct antimicrobial therapy at the point-of-care but requires time-consuming manual examination and expertise. This study evaluates the efficacy of a deep learning framework, dual stream multiple instance learning (DSMIL), in automating the analysis of whole slide imaging (WSI) of KOH smears for rapid and accurate detection of fungal infections.

Design: Retrospective observational study.

Participants: Corneal scrapings from 568 patients with suspected fungal keratitis; 51% contained filamentous fungi according to human expert interpretation.

Methods: Dual stream multiple instance learning was employed to analyze WSI of KOH smears. Due to the extensive size of these images, often exceeding 100 000 pixels, conventional computer vision methods (e.g., convolutional neural networks) are not feasible. Dual stream multiple instance learning segments the WSI into patches for analysis, extracting relevant features from each patch and aggregating these to make a comprehensive slide-level diagnosis while generating heat maps to visualize areas contributing most to the prediction. Fivefold cross-validation was used for training and validation, with a hold-out test set comprising 15% of the total samples.

Main outcome measures: Accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUC), F1 score, positive predictive value (PPV), and negative predictive value (NPV) in distinguishing fungal from nonfungal slides.

Results: Dual stream multiple instance learning demonstrated an overall AUC of 0.88 with an accuracy of 79% and an F1 score of 0.79 in distinguishing fungal from nonfungal slides, with sensitivity of 85%, specificity of 71%, PPV of 80%, and NPV of 79%. For "consensus cases," where 2 human graders agreed on the slide interpretation, the model achieved an accuracy of 85% and an F1 score of 0.85. For "discrepant cases," the accuracy was 71% with an F1 score of 0.71. The generated heatmaps highlighted regions corresponding to fungal elements. Code and models are open-sourced and available at https://github.com/Redd-Cornea-AI/KOH-Smear-DSMIL.

Conclusions: The DSMIL framework shows significant promise in automating interpretation of KOH smears. Its capability to handle large, high-resolution WSI data and accurately detect fungal infections, while providing visual explanations through heatmaps, could enhance the scalability of KOH smear interpretation, ultimately reducing the global burden of blindness from infectious keratitis.

Financial disclosures: Proprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多实例学习的氢氧化钾涂片全片丝状真菌性角膜炎自动检测。
目的:使用角膜刮痕的氢氧化钾(KOH)涂片诊断真菌性角膜炎,可以在护理点开始正确的抗菌治疗,但需要耗时的人工检查和专业知识。本研究评估了深度学习框架双流多实例学习(DSMIL)在KOH涂片全切片成像(WSI)自动化分析中的有效性,以快速准确地检测真菌感染。设计:回顾性观察性研究。参与者:568例疑似真菌性角膜炎患者的角膜刮痕;根据人类专家的解释,51%含有丝状真菌。方法:采用双流多实例学习法分析KOH涂片的WSI。由于这些图像的尺寸很大,通常超过100,000像素,传统的计算机视觉方法(例如卷积神经网络)是不可行的。双流多实例学习将WSI分割成小块进行分析,从每个小块中提取相关特征并将其聚合以进行全面的幻灯片级诊断,同时生成热图以可视化对预测贡献最大的区域。训练和验证采用五重交叉验证,保留测试集占总样本的15%。主要结果测量:区分真菌和非真菌载玻片的准确性、敏感性、特异性、受试者工作特征曲线下面积(AUC)、F1评分、阳性预测值(PPV)和阴性预测值(NPV)。结果:双流多实例学习在区分真菌和非真菌载玻片方面的总体AUC为0.88,准确率为79%,F1评分为0.79,敏感性为85%,特异性为71%,PPV为80%,NPV为79%。对于“共识案例”,即两名评分员对幻灯片的解读意见一致,该模型的准确率为85%,F1得分为0.85。对于“差异病例”,准确率为71%,F1得分为0.71。生成的热图突出显示了与真菌元素相对应的区域。代码和模型是开源的,可以在https://github.com/Redd-Cornea-AI/KOH-Smear-DSMIL.Conclusions上获得:DSMIL框架在自动化解释KOH涂片方面表现出了巨大的希望。它能够处理大量高分辨率WSI数据并准确检测真菌感染,同时通过热图提供可视化解释,可以增强KOH涂片解释的可扩展性,最终减少感染性角膜炎造成的全球失明负担。财务披露:专有或商业披露可在本文末尾的脚注和披露中找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ophthalmology science
Ophthalmology science Ophthalmology
CiteScore
3.40
自引率
0.00%
发文量
0
审稿时长
89 days
期刊最新文献
Reply. Corrigendum. Associations of Retinal Microvascular Density and Fractal Dimension with Glaucoma: A Prospective Study from UK Biobank. Pivotal Trial Toward Effectiveness of Self-administered OCT in Neovascular Age-related Macular Degeneration. Report 2-Artificial Intelligence Analytics. Population Pharmacokinetics of Pegcetacoplan in Patients with Geographic Atrophy or Neovascular Age-related Macular Degeneration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1