New insights into disease dynamics and treatment interventions with PID controller-based therapeutic strategies for pancreatic cancer

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED Computers & Mathematics with Applications Pub Date : 2025-01-09 DOI:10.1016/j.camwa.2025.01.006
David Amilo, Khadijeh Sadri, Muhammad Farman, Evren Hincal, Kottakkaran Sooppy Nisar
{"title":"New insights into disease dynamics and treatment interventions with PID controller-based therapeutic strategies for pancreatic cancer","authors":"David Amilo, Khadijeh Sadri, Muhammad Farman, Evren Hincal, Kottakkaran Sooppy Nisar","doi":"10.1016/j.camwa.2025.01.006","DOIUrl":null,"url":null,"abstract":"In this paper, we developed a mathematical model for pancreatic cancer progression using a system of nonlinear partial differential equations (PDEs) with time delays, capturing disease dynamics in the human body. The model represents six key cell populations involved in pancreatic cancer: cancer cells (<ce:italic>C</ce:italic>), pancreatic stellate cells (<ce:italic>P</ce:italic>), stromal cells (<ce:italic>S</ce:italic>), extracellular matrix-degrading enzymes (<ce:italic>E</ce:italic>), tumor-associated macrophages (<ce:italic>N</ce:italic>), and immunosuppressive cells (<ce:italic>I</ce:italic>). For biological feasibility, we established model existence and uniqueness via the method of continuity and Banach's contraction principle, with global stability verified through the Lyapunov method. Sensitivity analysis identified critical factors such as cancer cell division, stromal cell activation, and immune cell infiltration, as targets for effective treatment. Optimal control and PID strategies demonstrated potential in limiting cancer proliferation and reprogramming the tumor microenvironment, while simulations highlighted the need for timely and sustained interventions. The results emphasize the importance of early surgery and immunomodulation in maximizing treatment efficacy, offering new insights into personalized and adaptive approaches to improve patient outcomes in pancreatic cancer treatment.","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":"49 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.camwa.2025.01.006","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we developed a mathematical model for pancreatic cancer progression using a system of nonlinear partial differential equations (PDEs) with time delays, capturing disease dynamics in the human body. The model represents six key cell populations involved in pancreatic cancer: cancer cells (C), pancreatic stellate cells (P), stromal cells (S), extracellular matrix-degrading enzymes (E), tumor-associated macrophages (N), and immunosuppressive cells (I). For biological feasibility, we established model existence and uniqueness via the method of continuity and Banach's contraction principle, with global stability verified through the Lyapunov method. Sensitivity analysis identified critical factors such as cancer cell division, stromal cell activation, and immune cell infiltration, as targets for effective treatment. Optimal control and PID strategies demonstrated potential in limiting cancer proliferation and reprogramming the tumor microenvironment, while simulations highlighted the need for timely and sustained interventions. The results emphasize the importance of early surgery and immunomodulation in maximizing treatment efficacy, offering new insights into personalized and adaptive approaches to improve patient outcomes in pancreatic cancer treatment.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PID控制器的胰腺癌治疗策略对疾病动力学和治疗干预的新见解
在本文中,我们开发了胰腺癌进展的数学模型,使用具有时间延迟的非线性偏微分方程(PDEs)系统,捕捉人体内的疾病动态。该模型代表了胰腺癌参与的六个关键细胞群:癌细胞(C)、胰腺星状细胞(P)、基质细胞(S)、细胞外基质降解酶(E)、肿瘤相关巨噬细胞(N)和免疫抑制细胞(I)。为了生物学可行性,我们通过连续性法和Banach收缩原理建立了模型的存在性和唯一性,并通过Lyapunov方法验证了模型的全局稳定性。敏感性分析确定了关键因素,如癌细胞分裂、基质细胞活化和免疫细胞浸润,作为有效治疗的靶点。最优控制和PID策略显示了限制癌症增殖和重新编程肿瘤微环境的潜力,而模拟强调了及时和持续干预的必要性。结果强调了早期手术和免疫调节在最大化治疗效果中的重要性,为个性化和适应性方法提供了新的见解,以改善胰腺癌治疗的患者预后。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computers & Mathematics with Applications
Computers & Mathematics with Applications 工程技术-计算机:跨学科应用
CiteScore
5.10
自引率
10.30%
发文量
396
审稿时长
9.9 weeks
期刊介绍: Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).
期刊最新文献
Block ω-circulant preconditioners for parabolic equations A handy tool for assessing tetrahedron-based finite-cell methods and for numerical simulations in spheroidal domains A staggered discontinuous Galerkin method for solving SN transport equation on arbitrary polygonal grids Simulation of cartesian cut-cell technique for modeling turbulent flow in asymmetric diffusers using various turbulence models Analysis of the Picard-Newton finite element iteration for the stationary incompressible inductionless MHD equations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1