Design, Synthesis, and In Vivo Imaging of a Stable Xanthene-Based Dye with NIR-II Emission up to 1450 nm

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-01-15 DOI:10.1021/acs.analchem.4c05794
Xi Gao, Jin-yu Wang, Yufei Qin, Yiling Zhu, Ya-jun Liu, Kaixiang Zhou, Mengchao Cui
{"title":"Design, Synthesis, and In Vivo Imaging of a Stable Xanthene-Based Dye with NIR-II Emission up to 1450 nm","authors":"Xi Gao, Jin-yu Wang, Yufei Qin, Yiling Zhu, Ya-jun Liu, Kaixiang Zhou, Mengchao Cui","doi":"10.1021/acs.analchem.4c05794","DOIUrl":null,"url":null,"abstract":"The development of long-wavelength near-infrared II (NIR-II, 900–1700 nm) dyes is highly desirable but challenging. To achieve both red-shifted absorption/emission and superior <i>in vivo</i> imaging capabilities, a donor–acceptor–donor (D–A–D) xanthene core was strategically modified by extending π-conjugated double bonds and enhancing electron-donating properties. Two dyes named <b>VIX-1250</b> and <b>VIX-1450</b> were synthesized and exhibited notably red-shifted absorption/emission peaks at 942/1250 and 1098/1450 nm, respectively. Among them, <b>VIX-1450</b> demonstrated superior chemo- and photostability even at such long wavelengths. Fluorescent angiography using <b>VIX-1450</b> micelles enabled high-clarity blood vessel imaging with a remarkable signal-to-noise ratio (SNR), underscoring that the dye’s large Stokes shift (352 nm), good brightness (13 M<sup>–1</sup> cm<sup>–1</sup>), and long wavelength served as key factors for high-quality <i>in vivo</i> biosensing. Additionally, <b>VIX-1450</b> combined with <b>ICG</b> for dual-color imaging achieved near-zero optical cross talk, enabling different organ labeling. This study provides a new direction for the design of long-wavelength organic dyes.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"48 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c05794","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The development of long-wavelength near-infrared II (NIR-II, 900–1700 nm) dyes is highly desirable but challenging. To achieve both red-shifted absorption/emission and superior in vivo imaging capabilities, a donor–acceptor–donor (D–A–D) xanthene core was strategically modified by extending π-conjugated double bonds and enhancing electron-donating properties. Two dyes named VIX-1250 and VIX-1450 were synthesized and exhibited notably red-shifted absorption/emission peaks at 942/1250 and 1098/1450 nm, respectively. Among them, VIX-1450 demonstrated superior chemo- and photostability even at such long wavelengths. Fluorescent angiography using VIX-1450 micelles enabled high-clarity blood vessel imaging with a remarkable signal-to-noise ratio (SNR), underscoring that the dye’s large Stokes shift (352 nm), good brightness (13 M–1 cm–1), and long wavelength served as key factors for high-quality in vivo biosensing. Additionally, VIX-1450 combined with ICG for dual-color imaging achieved near-zero optical cross talk, enabling different organ labeling. This study provides a new direction for the design of long-wavelength organic dyes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种NIR-II发射波长达1450 nm的稳定杂蒽基染料的设计、合成和体内成像
开发长波近红外II (NIR-II, 900-1700 nm)染料是非常需要的,但具有挑战性。为了实现红移吸收/发射和优越的体内成像能力,通过扩展π共轭双键和增强给电子性能,对供体-受体-供体(D-A-D)杂蒽核进行了战略性修饰。合成了VIX-1250和VIX-1450两种染料,分别在942/1250和1098/1450 nm处表现出明显的红移吸收/发射峰。其中,VIX-1450即使在如此长的波长下也表现出优异的化学和光稳定性。使用VIX-1450胶束的荧光血管成像能够实现高清晰度血管成像,具有显著的信噪比(SNR),强调染料的大Stokes位移(352 nm),良好的亮度(13 M-1 cm-1)和长波长是高质量体内生物传感的关键因素。此外,VIX-1450结合ICG进行双色成像,实现了近零光串扰,实现了不同器官的标记。该研究为长波长有机染料的设计提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Integrated Biomimetic Platform for Enhancing the Efficient Capture and Visual Identification of Circulating Tumor Cells. Orthogonal Biochemical Sensing for Concentration-Independent Bacterial Fingerprinting. DeepMIR: A Hybrid Convolutional Neural Network-Transformer Framework for Accurate Identification of Target Components from Mid-Infrared Spectra of Mixtures Hierarchically Porous Amino-Functionalized Microporous Organic Networks Coated Fiber for Sensitive Breath Metabolite Profiling: A Noninvasive Strategy for Gastric Cancer Diagnosis Three Conformations of Polyglutamic Acid Monitored by Vibrational Optical Activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1