Integrated system for electrolyte recovery, product separation, and CO2 capture in CO2 reduction

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-01-16 DOI:10.1038/s41467-025-56111-6
Peng Wang, An Pei, Zhaoxi Chen, Peilin Sun, Chengyi Hu, Xue Wang, Nanfeng Zheng, Guangxu Chen
{"title":"Integrated system for electrolyte recovery, product separation, and CO2 capture in CO2 reduction","authors":"Peng Wang, An Pei, Zhaoxi Chen, Peilin Sun, Chengyi Hu, Xue Wang, Nanfeng Zheng, Guangxu Chen","doi":"10.1038/s41467-025-56111-6","DOIUrl":null,"url":null,"abstract":"<p>Challenges in CO<sub>2</sub> capture, CO<sub>2</sub> crossover, product separation, and electrolyte recovery hinder electrocatalytic CO<sub>2</sub> reduction (CO<sub>2</sub>R). Here, we present an integrated electrochemical recovery and separation system (ERSS) with an ion separation module (ISM) between the anode and cathode of a water electrolysis system. During ERSS operation, protons from the anolyte flow through the anodic cation exchange membrane (CEM) into the ISM, acidifying the CO<sub>2</sub>R effluent electrolyte. Cations like K<sup>+</sup> in the ISM flow through the cathodic CEM into the catholyte to balance the OH<sup>−</sup> ions from hydrogen evolution. ERSS recycles electrolyte-adsorbed CO<sub>2</sub>, recovers KOH with a 94.0% K<sup>+</sup> yield, and achieves an 86.2% separation efficiency for CO<sub>2</sub>R products. The recovered KOH can capture CO<sub>2</sub> from air or flue gas or be utilized as a CO<sub>2</sub>R electrolyte, closing the CO<sub>2</sub> capture, conversion, and utilization loop. Compared to the conventional acid-base neutralization process, ERSS saves $119.76 per ton of KOH recovered and is applicable to other aqueous alkaline electrosynthesis reactions.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"1 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56111-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Challenges in CO2 capture, CO2 crossover, product separation, and electrolyte recovery hinder electrocatalytic CO2 reduction (CO2R). Here, we present an integrated electrochemical recovery and separation system (ERSS) with an ion separation module (ISM) between the anode and cathode of a water electrolysis system. During ERSS operation, protons from the anolyte flow through the anodic cation exchange membrane (CEM) into the ISM, acidifying the CO2R effluent electrolyte. Cations like K+ in the ISM flow through the cathodic CEM into the catholyte to balance the OH ions from hydrogen evolution. ERSS recycles electrolyte-adsorbed CO2, recovers KOH with a 94.0% K+ yield, and achieves an 86.2% separation efficiency for CO2R products. The recovered KOH can capture CO2 from air or flue gas or be utilized as a CO2R electrolyte, closing the CO2 capture, conversion, and utilization loop. Compared to the conventional acid-base neutralization process, ERSS saves $119.76 per ton of KOH recovered and is applicable to other aqueous alkaline electrosynthesis reactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Author Correction: LLM-driven multimodal target volume contouring in radiation oncology Incomplete remyelination via therapeutically enhanced oligodendrogenesis is sufficient to recover visual cortical function Pregnancy entails a U-shaped trajectory in human brain structure linked to hormones and maternal attachment Rational engineering of DNA-nanoparticle motor with high speed and processivity comparable to motor proteins An unusual chiral-at-metal mechanism for BINOL-metal asymmetric catalysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1