Peculiar Magnetic and Magneto-Transport Properties in a Noncentrosymmetric Self-Intercalated van der Waals Ferromagnet Cr5Te8

IF 7.2 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Chemistry of Materials Pub Date : 2025-01-15 DOI:10.1021/acs.chemmater.4c02996
Banik Rai, Sandip Kumar Kuila, Rana Saha, Sankalpa Hazra, Chandan De, Jyotirmoy Sau, Venkatraman Gopalan, Partha Pratim Jana, Stuart S. P. Parkin, Nitesh Kumar
{"title":"Peculiar Magnetic and Magneto-Transport Properties in a Noncentrosymmetric Self-Intercalated van der Waals Ferromagnet Cr5Te8","authors":"Banik Rai, Sandip Kumar Kuila, Rana Saha, Sankalpa Hazra, Chandan De, Jyotirmoy Sau, Venkatraman Gopalan, Partha Pratim Jana, Stuart S. P. Parkin, Nitesh Kumar","doi":"10.1021/acs.chemmater.4c02996","DOIUrl":null,"url":null,"abstract":"Trigonal Cr<sub>5</sub>Te<sub>8</sub>, a self-intercalated van der Waals ferromagnet with an out-of-plane magnetic anisotropy, has long been known to crystallize in a centrosymmetric structure. However, optical second harmonic generation experiments, together with comprehensive structural analysis, indicate that this compound rather adopts a noncentrosymmetric structure. Lorentz transmission electron microscopy reveals the presence of Néel-type skyrmions, consistent with its noncentrosymmetric structure. A large anomalous Hall conductivity of 102 Ω<sup>–1</sup>cm<sup>–1</sup> at low temperature stems from intrinsic origin, which is larger than any previously reported values in the bulk Cr–Te system. Notably, spontaneous topological Hall resistivity arising from the skyrmionic phase has been observed. Our findings not only elucidate the unique magnetic and magneto-transport properties of noncentrosymmetric trigonal Cr<sub>5</sub>Te<sub>8</sub>, but also open new avenues for investigating the effects of broken inversion symmetry on material properties and their potential applications.","PeriodicalId":33,"journal":{"name":"Chemistry of Materials","volume":"1 1","pages":""},"PeriodicalIF":7.2000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.chemmater.4c02996","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Trigonal Cr5Te8, a self-intercalated van der Waals ferromagnet with an out-of-plane magnetic anisotropy, has long been known to crystallize in a centrosymmetric structure. However, optical second harmonic generation experiments, together with comprehensive structural analysis, indicate that this compound rather adopts a noncentrosymmetric structure. Lorentz transmission electron microscopy reveals the presence of Néel-type skyrmions, consistent with its noncentrosymmetric structure. A large anomalous Hall conductivity of 102 Ω–1cm–1 at low temperature stems from intrinsic origin, which is larger than any previously reported values in the bulk Cr–Te system. Notably, spontaneous topological Hall resistivity arising from the skyrmionic phase has been observed. Our findings not only elucidate the unique magnetic and magneto-transport properties of noncentrosymmetric trigonal Cr5Te8, but also open new avenues for investigating the effects of broken inversion symmetry on material properties and their potential applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemistry of Materials
Chemistry of Materials 工程技术-材料科学:综合
CiteScore
14.10
自引率
5.80%
发文量
929
审稿时长
1.5 months
期刊介绍: The journal Chemistry of Materials focuses on publishing original research at the intersection of materials science and chemistry. The studies published in the journal involve chemistry as a prominent component and explore topics such as the design, synthesis, characterization, processing, understanding, and application of functional or potentially functional materials. The journal covers various areas of interest, including inorganic and organic solid-state chemistry, nanomaterials, biomaterials, thin films and polymers, and composite/hybrid materials. The journal particularly seeks papers that highlight the creation or development of innovative materials with novel optical, electrical, magnetic, catalytic, or mechanical properties. It is essential that manuscripts on these topics have a primary focus on the chemistry of materials and represent a significant advancement compared to prior research. Before external reviews are sought, submitted manuscripts undergo a review process by a minimum of two editors to ensure their appropriateness for the journal and the presence of sufficient evidence of a significant advance that will be of broad interest to the materials chemistry community.
期刊最新文献
Urea Calcium Borohydrides as Ca2+ Solid-State Electrolytes Inhibitor-Assisted Atomic Layer Deposition for Uniformly Doped Ultrathin Films: Overcoming Compositional and Thickness Limitations Influence of Poly(vinylpyrrolidone) Synthesis Conditions on the Formation of Gold Nanostars Peculiar Magnetic and Magneto-Transport Properties in a Noncentrosymmetric Self-Intercalated van der Waals Ferromagnet Cr5Te8 Preparation of Uniaxially Aligned Nanoporous Polymer Films via Photopolymerization Using Self-Assembling Molecular Templates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1