Martin Mohrmann, Louise C. Biddle, Gregor Rehder, Henry C. Bittig, Bastien Y. Queste
{"title":"Nord Stream methane leaks spread across 14% of Baltic waters","authors":"Martin Mohrmann, Louise C. Biddle, Gregor Rehder, Henry C. Bittig, Bastien Y. Queste","doi":"10.1038/s41467-024-53779-0","DOIUrl":null,"url":null,"abstract":"<p>A suspected 443-486 kt of methane escaped from the Nord Stream pipelines in September 2022 at four explosion sites across three pipelines. Much of this methane rapidly escaped to the atmosphere, while an unknown amount was dissolved. We use sustained high-resolution observations of methane concentrations from autonomous gliders and an instrumented ship of opportunity to reveal the timing and spread of dissolved methane across different Baltic regions and marine protected areas. Estimates of methane spread and concentrations are essential to understand the ecosystem response, and for establishing accurate priors for atmospheric outgassing and transport models. A numerical model, initialized by engineering estimates and our observations, enables us to constrain the mass of locally dissolved Nord Stream methane (9.5-14.7 kt). We show that dissolved methane decreased rapidly through outgassing, however initial concentrations were so high that 14% of the Baltic Sea still experienced concentrations 5 times greater than average natural levels.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"202 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-53779-0","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
A suspected 443-486 kt of methane escaped from the Nord Stream pipelines in September 2022 at four explosion sites across three pipelines. Much of this methane rapidly escaped to the atmosphere, while an unknown amount was dissolved. We use sustained high-resolution observations of methane concentrations from autonomous gliders and an instrumented ship of opportunity to reveal the timing and spread of dissolved methane across different Baltic regions and marine protected areas. Estimates of methane spread and concentrations are essential to understand the ecosystem response, and for establishing accurate priors for atmospheric outgassing and transport models. A numerical model, initialized by engineering estimates and our observations, enables us to constrain the mass of locally dissolved Nord Stream methane (9.5-14.7 kt). We show that dissolved methane decreased rapidly through outgassing, however initial concentrations were so high that 14% of the Baltic Sea still experienced concentrations 5 times greater than average natural levels.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.