Soil phoD-harboring bacteria mediate the responses of phosphorus availability to N addition and mowing among soil aggregates

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE Geoderma Pub Date : 2025-01-12 DOI:10.1016/j.geoderma.2025.117170
Haiying Cui, Shanling Wang, Tianyan Wei, Xuechen Yang, Xiuping Li, Mingcai Fan, Xiaochong Zhang, Wenzheng Song, Jian-Ying Ma, Wei Sun
{"title":"Soil phoD-harboring bacteria mediate the responses of phosphorus availability to N addition and mowing among soil aggregates","authors":"Haiying Cui, Shanling Wang, Tianyan Wei, Xuechen Yang, Xiuping Li, Mingcai Fan, Xiaochong Zhang, Wenzheng Song, Jian-Ying Ma, Wei Sun","doi":"10.1016/j.geoderma.2025.117170","DOIUrl":null,"url":null,"abstract":"Phosphorus (P), like nitrogen (N), is a major limiting nutrient for ecosystem structures and functions. Soils in grasslands commonly have limited P availability for organisms, especially under global change (i.e., N deposition) and land-use intensification (i.e., mowing or hay harvest). Soil <ce:italic>phoD</ce:italic>-harboring bacteria regulate P cycling and maintain P supply in soils. However, it remains unclear how P availability responds to N addition and mowing. The potential microbial mechanisms also require clarification among soil aggregates. We conducted a seven-year field experiment to investigate how N addition at different levels (0, 5, 10, and 20 g N/m<ce:sup loc=\"post\">−2</ce:sup> y<ce:sup loc=\"post\">−1</ce:sup>) and mowing (unmown and mown) affects soil available P in macro- and micro- aggregates in a temperate grassland in Northeast China. We found that N addition markedly decreased available P in macroaggregates, regardless of mowing. In contrast, available P in microaggregates decreased following N addition under mown but increased at addition levels of 10 and 20 g N/m<ce:sup loc=\"post\">−2</ce:sup> yr<ce:sup loc=\"post\">−1</ce:sup> under unmown. Our results also showed that soil available P was positively related to the diversity of <ce:italic>phoD</ce:italic>-harboring bacteria and <ce:italic>phoD</ce:italic> gene abundance in macroaggregates, and to alkaline phosphatase activity and <ce:italic>phoD</ce:italic> gene abundance in microaggregates. These findings suggests that microbial characteristics mediating the response of available P to N addition and mowing vary with soil aggregates. Our study highlights that soil aggregates should be carefully protected if we wish to promote the sustainable development of grassland ecosystems and P supply under a scenario of future global change and land-use intensification.","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"2 1","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-01-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.geoderma.2025.117170","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Phosphorus (P), like nitrogen (N), is a major limiting nutrient for ecosystem structures and functions. Soils in grasslands commonly have limited P availability for organisms, especially under global change (i.e., N deposition) and land-use intensification (i.e., mowing or hay harvest). Soil phoD-harboring bacteria regulate P cycling and maintain P supply in soils. However, it remains unclear how P availability responds to N addition and mowing. The potential microbial mechanisms also require clarification among soil aggregates. We conducted a seven-year field experiment to investigate how N addition at different levels (0, 5, 10, and 20 g N/m−2 y−1) and mowing (unmown and mown) affects soil available P in macro- and micro- aggregates in a temperate grassland in Northeast China. We found that N addition markedly decreased available P in macroaggregates, regardless of mowing. In contrast, available P in microaggregates decreased following N addition under mown but increased at addition levels of 10 and 20 g N/m−2 yr−1 under unmown. Our results also showed that soil available P was positively related to the diversity of phoD-harboring bacteria and phoD gene abundance in macroaggregates, and to alkaline phosphatase activity and phoD gene abundance in microaggregates. These findings suggests that microbial characteristics mediating the response of available P to N addition and mowing vary with soil aggregates. Our study highlights that soil aggregates should be carefully protected if we wish to promote the sustainable development of grassland ecosystems and P supply under a scenario of future global change and land-use intensification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
期刊最新文献
Variations in body size and reproductive mode of oribatid mites along an altitudinal gradient in a temperate mountain region Soil phoD-harboring bacteria mediate the responses of phosphorus availability to N addition and mowing among soil aggregates Field-based soil extractions capture more amino acids that are lost during short-term storage Creating soil districts for Australia based on pedogenon mapping Impacts of groundwater storage variability on soil salinization in a semi-arid agricultural plain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1