STanH: Parametric Quantization for Variable Rate Learned Image Compression

Alberto Presta;Enzo Tartaglione;Attilio Fiandrotti;Marco Grangetto
{"title":"STanH: Parametric Quantization for Variable Rate Learned Image Compression","authors":"Alberto Presta;Enzo Tartaglione;Attilio Fiandrotti;Marco Grangetto","doi":"10.1109/TIP.2025.3527883","DOIUrl":null,"url":null,"abstract":"In end-to-end learned image compression, encoder and decoder are jointly trained to minimize a <inline-formula> <tex-math>$\\boldsymbol {R} \\boldsymbol {+} \\boldsymbol {\\lambda } \\boldsymbol {D}$ </tex-math></inline-formula> cost function, where <inline-formula> <tex-math>$\\boldsymbol {\\lambda }$ </tex-math></inline-formula> controls the trade-off between rate of the quantized latent representation and image quality. Unfortunately, a distinct encoder-decoder pair with millions of parameters must be trained for each <inline-formula> <tex-math>$\\boldsymbol {\\lambda }$ </tex-math></inline-formula>, hence the need to switch encoders and to store multiple encoders and decoders on the user device for every target rate. This paper proposes to exploit a differentiable quantizer designed around a parametric sum of hyperbolic tangents, called STanH, that relaxes the step-wise quantization function. STanH is implemented as a differentiable activation layer with learnable quantization parameters that can be plugged into a pre-trained fixed rate model and refined to achieve different target bitrates. Experimental results show that our method enables variable rate coding with comparable efficiency to the state-of-the-art, yet with significant savings in terms of ease of deployment, training time, and storage costs.","PeriodicalId":94032,"journal":{"name":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","volume":"34 ","pages":"639-651"},"PeriodicalIF":13.7000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on image processing : a publication of the IEEE Signal Processing Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10843163/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In end-to-end learned image compression, encoder and decoder are jointly trained to minimize a $\boldsymbol {R} \boldsymbol {+} \boldsymbol {\lambda } \boldsymbol {D}$ cost function, where $\boldsymbol {\lambda }$ controls the trade-off between rate of the quantized latent representation and image quality. Unfortunately, a distinct encoder-decoder pair with millions of parameters must be trained for each $\boldsymbol {\lambda }$ , hence the need to switch encoders and to store multiple encoders and decoders on the user device for every target rate. This paper proposes to exploit a differentiable quantizer designed around a parametric sum of hyperbolic tangents, called STanH, that relaxes the step-wise quantization function. STanH is implemented as a differentiable activation layer with learnable quantization parameters that can be plugged into a pre-trained fixed rate model and refined to achieve different target bitrates. Experimental results show that our method enables variable rate coding with comparable efficiency to the state-of-the-art, yet with significant savings in terms of ease of deployment, training time, and storage costs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可变速率学习图像压缩的参数量化
在端到端学习图像压缩中,编码器和解码器被联合训练以最小化$\boldsymbol {R} \boldsymbol {+} \boldsymbol {\lambda} \boldsymbol {D}$代价函数,其中$\boldsymbol {\lambda}$控制量化潜在表示率和图像质量之间的权衡。不幸的是,必须为每个$\boldsymbol {\lambda}$训练具有数百万个参数的不同编码器-解码器对,因此需要切换编码器并为每个目标速率在用户设备上存储多个编码器和解码器。本文提出了一种围绕双曲切线的参数和设计的可微量化器,称为STanH,它放宽了逐步量化函数。STanH被实现为一个可微的激活层,具有可学习的量化参数,可以插入到预训练的固定速率模型中,并对其进行细化以实现不同的目标比特率。实验结果表明,我们的方法使可变速率编码具有与最先进的效率相当的效率,并且在易于部署,培训时间和存储成本方面节省了大量费用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reflectance Prediction-based Knowledge Distillation for Robust 3D Object Detection in Compressed Point Clouds. Implicit Neural Compression of Point Clouds. Token Calibration for Transformer-based Domain Adaptation. Task-Driven Underwater Image Enhancement via Hierarchical Semantic Refinement. Coupled Diffusion Posterior Sampling for Unsupervised Hyperspectral and Multispectral Images Fusion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1