Rui Ren, Fan Li, Han Zhang, Yingying Wang, Bijin Xiong, Jintao Zhu
{"title":"Self-Assembly of Regioselective Polymer-Tethered Gold Nanorods in Selective Solvents","authors":"Rui Ren, Fan Li, Han Zhang, Yingying Wang, Bijin Xiong, Jintao Zhu","doi":"10.1021/acs.macromol.4c02257","DOIUrl":null,"url":null,"abstract":"The self-assembly of regioselective polymer-tethered gold nanorods (AuNRs) offers significant potential for creating functional nanoscale architectures with applications in optoelectronics, sensing, and nanomedicine. In this study, we synthesized AuNRs with well-defined dimensions and modified them regioselectively with polystyrene (PS) at the ends and poly(4-vinylpyridine) (P4VP) on the sidewalls. Controlled self-assembly was achieved using selective solvent methods, resulting in distinct end-to-end and side-by-side configurations depending on the solvent environment. The study further explored the influence of the molecular weight of the polymer ligands and the AuNR core size on the assembly structures. Additionally, the assembly process were investigated in real-time using small-angle X-ray scattering (SAXS) and UV–visible spectroscopy, revealing a two-stage assembly process significantly affected by solvent composition. The results demonstrated that the evaporation rate of the solvent plays a critical role in the final assembly morphology. Slow solvent evaporation led to the formation of well-ordered thin films due to the gradual aggregation of side-by-side arranged AuNRs, while faster evaporation favored the formation of vesicles or micelles. These structures are a result of the differential solubility and phase separation of the polymer ligands under varying solvent conditions. This study provides a comprehensive understanding of the assembly mechanisms and the dynamic processes governing the formation of different nanostructures, offering a foundation for the design of AuNR-based nanomaterials with precise structural and functional control.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"23 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c02257","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The self-assembly of regioselective polymer-tethered gold nanorods (AuNRs) offers significant potential for creating functional nanoscale architectures with applications in optoelectronics, sensing, and nanomedicine. In this study, we synthesized AuNRs with well-defined dimensions and modified them regioselectively with polystyrene (PS) at the ends and poly(4-vinylpyridine) (P4VP) on the sidewalls. Controlled self-assembly was achieved using selective solvent methods, resulting in distinct end-to-end and side-by-side configurations depending on the solvent environment. The study further explored the influence of the molecular weight of the polymer ligands and the AuNR core size on the assembly structures. Additionally, the assembly process were investigated in real-time using small-angle X-ray scattering (SAXS) and UV–visible spectroscopy, revealing a two-stage assembly process significantly affected by solvent composition. The results demonstrated that the evaporation rate of the solvent plays a critical role in the final assembly morphology. Slow solvent evaporation led to the formation of well-ordered thin films due to the gradual aggregation of side-by-side arranged AuNRs, while faster evaporation favored the formation of vesicles or micelles. These structures are a result of the differential solubility and phase separation of the polymer ligands under varying solvent conditions. This study provides a comprehensive understanding of the assembly mechanisms and the dynamic processes governing the formation of different nanostructures, offering a foundation for the design of AuNR-based nanomaterials with precise structural and functional control.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.