Development of the Crystallization Process for Rivaroxaban–Oxalic Acid Cocrystal Preparation Using a Combination of Phase Diagrams and In Situ Measurements

IF 3.1 3区 化学 Q2 CHEMISTRY, APPLIED Organic Process Research & Development Pub Date : 2025-01-15 DOI:10.1021/acs.oprd.4c00509
Erika Hriňová, Igor Čerňa, Eliška Zmeškalová, Luděk Ridvan, Miroslav Šoóš
{"title":"Development of the Crystallization Process for Rivaroxaban–Oxalic Acid Cocrystal Preparation Using a Combination of Phase Diagrams and In Situ Measurements","authors":"Erika Hriňová, Igor Čerňa, Eliška Zmeškalová, Luděk Ridvan, Miroslav Šoóš","doi":"10.1021/acs.oprd.4c00509","DOIUrl":null,"url":null,"abstract":"This study presents the development of the crystallization process for the rivaroxaban–oxalic acid cocrystal. The solvent screening was conducted by means of the crystallization of the cocrystal from a saturated solution of acetone, ethanol, isopropanol, acetonitrile, ethyl acetate, and ethyl formate. Two selected solvents, namely, ethyl formate and acetone, were subjected to ternary phase diagram construction in order to ascertain the system equilibrium and identify the boundaries for pure cocrystal crystallization. The crystallization process was subsequently examined through the utilization of an in situ Raman spectroscopy probe. It was observed that the rate of transformation decreased at higher temperatures, which is most probably due to lower saturation in terms of the cocrystal. The reaction mechanism was observed by an in situ imaging probe, showing that new crystals were growing directly from the solution instead of growing from the surface of existing crystals. These findings were employed in the development of a crystallization process for both solvents, resulting in enhanced time and cost efficiency. A notable difference in particle size was observed between solvents, with acetone producing larger crystals. Consequently, ethyl formate was selected as the optimal solvent for further scale-up of the process, given its favorable impact on dissolution enhancement.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"30 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00509","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents the development of the crystallization process for the rivaroxaban–oxalic acid cocrystal. The solvent screening was conducted by means of the crystallization of the cocrystal from a saturated solution of acetone, ethanol, isopropanol, acetonitrile, ethyl acetate, and ethyl formate. Two selected solvents, namely, ethyl formate and acetone, were subjected to ternary phase diagram construction in order to ascertain the system equilibrium and identify the boundaries for pure cocrystal crystallization. The crystallization process was subsequently examined through the utilization of an in situ Raman spectroscopy probe. It was observed that the rate of transformation decreased at higher temperatures, which is most probably due to lower saturation in terms of the cocrystal. The reaction mechanism was observed by an in situ imaging probe, showing that new crystals were growing directly from the solution instead of growing from the surface of existing crystals. These findings were employed in the development of a crystallization process for both solvents, resulting in enhanced time and cost efficiency. A notable difference in particle size was observed between solvents, with acetone producing larger crystals. Consequently, ethyl formate was selected as the optimal solvent for further scale-up of the process, given its favorable impact on dissolution enhancement.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.90
自引率
14.70%
发文量
251
审稿时长
2 months
期刊介绍: The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.
期刊最新文献
Synergizing Process Conditions, Water Sensitivity, and Kinetic Mechanisms to Optimize Sodium Salicylate Yield in Sodium Phenol Carboxylation OPR&D: An Exceptional Legacy and Exciting Opportunities for the Future of Process Chemistry Can a Simple Surrogate Model System Be Used to Develop a Continuous Flow Packed Bed Hydrogenation for a Complex Molecule? Correction to “Development of an Optimized Process for 2,4-Dichloro-5-fluoroacetophenone: A Key Intermediate of Ciprofloxacin” Development of the Crystallization Process for Rivaroxaban–Oxalic Acid Cocrystal Preparation Using a Combination of Phase Diagrams and In Situ Measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1