Development of the Crystallization Process for Rivaroxaban–Oxalic Acid Cocrystal Preparation Using a Combination of Phase Diagrams and In Situ Measurements
Erika Hriňová, Igor Čerňa, Eliška Zmeškalová, Luděk Ridvan, Miroslav Šoóš
{"title":"Development of the Crystallization Process for Rivaroxaban–Oxalic Acid Cocrystal Preparation Using a Combination of Phase Diagrams and In Situ Measurements","authors":"Erika Hriňová, Igor Čerňa, Eliška Zmeškalová, Luděk Ridvan, Miroslav Šoóš","doi":"10.1021/acs.oprd.4c00509","DOIUrl":null,"url":null,"abstract":"This study presents the development of the crystallization process for the rivaroxaban–oxalic acid cocrystal. The solvent screening was conducted by means of the crystallization of the cocrystal from a saturated solution of acetone, ethanol, isopropanol, acetonitrile, ethyl acetate, and ethyl formate. Two selected solvents, namely, ethyl formate and acetone, were subjected to ternary phase diagram construction in order to ascertain the system equilibrium and identify the boundaries for pure cocrystal crystallization. The crystallization process was subsequently examined through the utilization of an in situ Raman spectroscopy probe. It was observed that the rate of transformation decreased at higher temperatures, which is most probably due to lower saturation in terms of the cocrystal. The reaction mechanism was observed by an in situ imaging probe, showing that new crystals were growing directly from the solution instead of growing from the surface of existing crystals. These findings were employed in the development of a crystallization process for both solvents, resulting in enhanced time and cost efficiency. A notable difference in particle size was observed between solvents, with acetone producing larger crystals. Consequently, ethyl formate was selected as the optimal solvent for further scale-up of the process, given its favorable impact on dissolution enhancement.","PeriodicalId":55,"journal":{"name":"Organic Process Research & Development","volume":"30 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Process Research & Development","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.oprd.4c00509","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents the development of the crystallization process for the rivaroxaban–oxalic acid cocrystal. The solvent screening was conducted by means of the crystallization of the cocrystal from a saturated solution of acetone, ethanol, isopropanol, acetonitrile, ethyl acetate, and ethyl formate. Two selected solvents, namely, ethyl formate and acetone, were subjected to ternary phase diagram construction in order to ascertain the system equilibrium and identify the boundaries for pure cocrystal crystallization. The crystallization process was subsequently examined through the utilization of an in situ Raman spectroscopy probe. It was observed that the rate of transformation decreased at higher temperatures, which is most probably due to lower saturation in terms of the cocrystal. The reaction mechanism was observed by an in situ imaging probe, showing that new crystals were growing directly from the solution instead of growing from the surface of existing crystals. These findings were employed in the development of a crystallization process for both solvents, resulting in enhanced time and cost efficiency. A notable difference in particle size was observed between solvents, with acetone producing larger crystals. Consequently, ethyl formate was selected as the optimal solvent for further scale-up of the process, given its favorable impact on dissolution enhancement.
期刊介绍:
The journal Organic Process Research & Development serves as a communication tool between industrial chemists and chemists working in universities and research institutes. As such, it reports original work from the broad field of industrial process chemistry but also presents academic results that are relevant, or potentially relevant, to industrial applications. Process chemistry is the science that enables the safe, environmentally benign and ultimately economical manufacturing of organic compounds that are required in larger amounts to help address the needs of society. Consequently, the Journal encompasses every aspect of organic chemistry, including all aspects of catalysis, synthetic methodology development and synthetic strategy exploration, but also includes aspects from analytical and solid-state chemistry and chemical engineering, such as work-up tools,process safety, or flow-chemistry. The goal of development and optimization of chemical reactions and processes is their transfer to a larger scale; original work describing such studies and the actual implementation on scale is highly relevant to the journal. However, studies on new developments from either industry, research institutes or academia that have not yet been demonstrated on scale, but where an industrial utility can be expected and where the study has addressed important prerequisites for a scale-up and has given confidence into the reliability and practicality of the chemistry, also serve the mission of OPR&D as a communication tool between the different contributors to the field.