{"title":"Dual Kinetic Control of Polycarbonate Sequences via Breaking Catalysis Symmetry Using Dual Biomimetic Organoboron Catalysts","authors":"Zhiyu Chen, Guan-Wen Yang, Tianhao Wu, Zizhao Qian, Guang-Peng Wu","doi":"10.1021/acs.macromol.4c02912","DOIUrl":null,"url":null,"abstract":"Biomimetic catalysis is extensively used in chemical synthesis targeting to achieve satisfactory reactivities. However, artificial catalysts possessing outstanding sequence controllability over macromolecular structures that could be precisely achieved in nature remain scarce, especially in the preparation of complex macromolecules featuring kinetically trapped structures. Herein, we report a dual biomimetic catalyst design for precise sequence regulation in kinetically controlled CO<sub>2</sub>/epoxide copolymerization. The as-synthesized dissymmetric organoboron catalysts possess dissymmetric catalysis microenvironments, which differentiate the transfer rates of polymer alkoxy anions between the two boron centers, thus enabling precise sequence regulation. Consequently, a high −ABB–/–AB– ratio of 92% was achieved, up to 3.3 times that of analogous symmetric catalysts (<i>Nat. Synth.</i> <b>2022</b>, <i>1</i>, 892–901). Detailed mechanistic studies reveal that dual kinetic modulations are responsible for sequence regulation. This catalyst design tactic should inspire effective catalyst designs for precise chemical transformations.","PeriodicalId":51,"journal":{"name":"Macromolecules","volume":"14 1","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.macromol.4c02912","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Biomimetic catalysis is extensively used in chemical synthesis targeting to achieve satisfactory reactivities. However, artificial catalysts possessing outstanding sequence controllability over macromolecular structures that could be precisely achieved in nature remain scarce, especially in the preparation of complex macromolecules featuring kinetically trapped structures. Herein, we report a dual biomimetic catalyst design for precise sequence regulation in kinetically controlled CO2/epoxide copolymerization. The as-synthesized dissymmetric organoboron catalysts possess dissymmetric catalysis microenvironments, which differentiate the transfer rates of polymer alkoxy anions between the two boron centers, thus enabling precise sequence regulation. Consequently, a high −ABB–/–AB– ratio of 92% was achieved, up to 3.3 times that of analogous symmetric catalysts (Nat. Synth.2022, 1, 892–901). Detailed mechanistic studies reveal that dual kinetic modulations are responsible for sequence regulation. This catalyst design tactic should inspire effective catalyst designs for precise chemical transformations.
期刊介绍:
Macromolecules publishes original, fundamental, and impactful research on all aspects of polymer science. Topics of interest include synthesis (e.g., controlled polymerizations, polymerization catalysis, post polymerization modification, new monomer structures and polymer architectures, and polymerization mechanisms/kinetics analysis); phase behavior, thermodynamics, dynamic, and ordering/disordering phenomena (e.g., self-assembly, gelation, crystallization, solution/melt/solid-state characteristics); structure and properties (e.g., mechanical and rheological properties, surface/interfacial characteristics, electronic and transport properties); new state of the art characterization (e.g., spectroscopy, scattering, microscopy, rheology), simulation (e.g., Monte Carlo, molecular dynamics, multi-scale/coarse-grained modeling), and theoretical methods. Renewable/sustainable polymers, polymer networks, responsive polymers, electro-, magneto- and opto-active macromolecules, inorganic polymers, charge-transporting polymers (ion-containing, semiconducting, and conducting), nanostructured polymers, and polymer composites are also of interest. Typical papers published in Macromolecules showcase important and innovative concepts, experimental methods/observations, and theoretical/computational approaches that demonstrate a fundamental advance in the understanding of polymers.