Distinct structural and functional heterochromatin partitioning of lamin B1 and lamin B2 revealed using genome-wide nicking enzyme epitope targeted DNA sequencing

IF 16.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Nucleic Acids Research Pub Date : 2025-01-16 DOI:10.1093/nar/gkae1317
Sagnik Sen, Pierre-Olivier Estève, Karthikeyan Raman, Julie Beaulieu, Hang Gyeong Chin, George R Feehery, Udayakumar S Vishnu, Shuang-yong Xu, James C Samuelson, Sriharsa Pradhan
{"title":"Distinct structural and functional heterochromatin partitioning of lamin B1 and lamin B2 revealed using genome-wide nicking enzyme epitope targeted DNA sequencing","authors":"Sagnik Sen, Pierre-Olivier Estève, Karthikeyan Raman, Julie Beaulieu, Hang Gyeong Chin, George R Feehery, Udayakumar S Vishnu, Shuang-yong Xu, James C Samuelson, Sriharsa Pradhan","doi":"10.1093/nar/gkae1317","DOIUrl":null,"url":null,"abstract":"Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq). NEED-seq offers antibody-targeted controlled nicking by Nt.CviPII-pGL fusion to study specific protein–DNA complexes in formaldehyde fixed cells, allowing for both visual and genomic resolution of epitope bound chromatin. When applied to nuclei, NEED-seq yielded genome-wide profile of chromatin-associated proteins and histone PTMs. Additionally, NEED-seq of lamin B1 and B2 demonstrated their association with heterochromatin. Lamin B1- and B2-associated domains (LAD) segregated to three different states, and states with stronger LAD correlated with heterochromatic marks. Hi-C analysis displayed A and B compartment with equal lamin B1 and B2 distribution, although methylated DNA remained high in B compartment. LAD clustering with Hi-C resulted in subcompartments, with lamin B1 and B2 partitioning to facultative and constitutive heterochromatin, respectively, and were associated with neuronal development. Thus, lamin B1 and B2 show structural and functional partitioning in mammalian nucleus.","PeriodicalId":19471,"journal":{"name":"Nucleic Acids Research","volume":"30 1","pages":""},"PeriodicalIF":16.6000,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nucleic Acids Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/nar/gkae1317","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Gene expression is regulated by chromatin DNA methylation and other features, including histone post-translational modifications (PTMs), chromatin remodelers and transcription factor occupancy. A complete understanding of gene regulation will require the mapping of these chromatin features in small cell number samples. Here we describe a novel genome-wide chromatin profiling technology, named as Nicking Enzyme Epitope targeted DNA sequencing (NEED-seq). NEED-seq offers antibody-targeted controlled nicking by Nt.CviPII-pGL fusion to study specific protein–DNA complexes in formaldehyde fixed cells, allowing for both visual and genomic resolution of epitope bound chromatin. When applied to nuclei, NEED-seq yielded genome-wide profile of chromatin-associated proteins and histone PTMs. Additionally, NEED-seq of lamin B1 and B2 demonstrated their association with heterochromatin. Lamin B1- and B2-associated domains (LAD) segregated to three different states, and states with stronger LAD correlated with heterochromatic marks. Hi-C analysis displayed A and B compartment with equal lamin B1 and B2 distribution, although methylated DNA remained high in B compartment. LAD clustering with Hi-C resulted in subcompartments, with lamin B1 and B2 partitioning to facultative and constitutive heterochromatin, respectively, and were associated with neuronal development. Thus, lamin B1 and B2 show structural and functional partitioning in mammalian nucleus.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nucleic Acids Research
Nucleic Acids Research 生物-生化与分子生物学
CiteScore
27.10
自引率
4.70%
发文量
1057
审稿时长
2 months
期刊介绍: Nucleic Acids Research (NAR) is a scientific journal that publishes research on various aspects of nucleic acids and proteins involved in nucleic acid metabolism and interactions. It covers areas such as chemistry and synthetic biology, computational biology, gene regulation, chromatin and epigenetics, genome integrity, repair and replication, genomics, molecular biology, nucleic acid enzymes, RNA, and structural biology. The journal also includes a Survey and Summary section for brief reviews. Additionally, each year, the first issue is dedicated to biological databases, and an issue in July focuses on web-based software resources for the biological community. Nucleic Acids Research is indexed by several services including Abstracts on Hygiene and Communicable Diseases, Animal Breeding Abstracts, Agricultural Engineering Abstracts, Agbiotech News and Information, BIOSIS Previews, CAB Abstracts, and EMBASE.
期刊最新文献
Mapping the spatial atlas of the human bone tissue integrating spatial and single-cell transcriptomics Nonlinear regulatory dynamics of bacterial restriction-modification systems modulates horizontal gene transfer susceptibility Distinct structural and functional heterochromatin partitioning of lamin B1 and lamin B2 revealed using genome-wide nicking enzyme epitope targeted DNA sequencing Modular organization of enhancer network provides transcriptional robustness in mammalian development Embedding a ribonuclease in the spore crust couples gene expression to spore development in Bacillus subtilis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1